Đáp án C
- Nếu một trong ba số bằng 0 thì P=0
- Nếu x y z ≠ 0 ta đặt
2 x = 3 y = 6 z = k > 0 ⇒ 2.3 = 6
⇒ k 1 x . k 1 y = k 1 z ⇔ 1 x + 1 y = 1 z ⇒ P = 2 x y
Đáp án C
- Nếu một trong ba số bằng 0 thì P=0
- Nếu x y z ≠ 0 ta đặt
2 x = 3 y = 6 z = k > 0 ⇒ 2.3 = 6
⇒ k 1 x . k 1 y = k 1 z ⇔ 1 x + 1 y = 1 z ⇒ P = 2 x y
Cho các số thực x,y,z khác 0 thỏa mãn 3 x = 4 y = 12 − z . Tính giá trị của biểu P = x y + y z + z x ,
A. 12
B. 144
C. 0
D. 1
cho x,y,z là các số thỏa mãn :
x/y=2/3 ; y/z= 1/4 va 1/x+1/y+1/z= 1
hãy tìm x,y,z
Cho ba số thực x, y, z thỏa mãn đồng thời các biểu thức: x + 2 y + 3 z - 10 = 0 , 3 x + y + 2 z - 13 = 0 và 2 x + 3 y + z - 13 = 0 . Tính T = 2 ( x + y + z ) ?
A. T = 12
B. T = -12
C. T = -6
D. T = 6
Cho các số thực x, y, z thỏa mãn 3 x = 5 x = 15 2017 x + y − z . Gọi S = x y + y z + z x . Khẳng định nào đúng?
A. S ∈ 1 ; 2016
B. S ∈ 0 ; 2017
C. S ∈ 0 ; 2018
D. S ∈ 2016 ; 2017
Cho x, y, z là các số thực dương thỏa mãn điều kiện y 2 ≥ 2 x z ; z 2 ≥ 2 x y . Giá trị nhỏ nhất của biểu thức: P = 2 x 2 x + y + y y + z + 3 z z + 2 x nằm trong khoảng nào sau đây?
A. (0;1)
B. (1;2)
C. (2;3)
D. (3;4)
Cho x;y;z là những số thực thỏa mãn: 3 x = 5 y = 15 - z Tính giá trị của biểu thức: P = x y + y z + z x
A. P = 1
B. P = 0
C. P = 2
D. P = 2016
Rút gọn biểu thức M=(x^3+y^3+z^3-3xyz)/( x^2+y^2+z^2-xy-yz-zx)
Cho các số thực dương x, y, z và thỏa mãn x + y + z = 3. Biểu thức P = x 4 + y 4 + 8 z 4 đạt GTNN bằng a b , trong đó a, b là các số tự nhiên dương, a b là phân số tối giản. Tính a - b
A. 234.
B. 523.
C. 235.
D. 525.
Cho các số thực x, y, z thỏa mãn điều kiện x - y + z = 3 x 2 + y 2 + z 2 = 5 . Gọi M, m lần lượt là giá trị lớn nhất, nhỏ nhất của biểu thức P = x + y - 2 z + 2 . Tính M + m
A. M + m = 2
B. M + m = 4 3 3
C. M + m = 4
D. M + m = 4 3 6