Ta có:
x⁴ + 1/x⁴ = x⁴ + 2.x².1/x² + 1/x⁴ - 2.x².1/x²
= (x² + 1/x²)² - 2.x².1/x²
= 4² - 2
= 14
Ta có:
\(\dfrac{x^2+1}{x^2}=4\) (ĐK: \(x\ne0\))
\(\Rightarrow x^2+1+4x^2\)
\(\Rightarrow4x^2-x^2=1\)
\(\Rightarrow3x^2=1\)
\(\Rightarrow x^2=\dfrac{1}{3}\)
\(\Rightarrow x=\dfrac{\sqrt{3}}{3}\left(tm\right)\)
Thay vào biểu thức ta có:
\(\dfrac{x^4+1}{x^4}\)
\(=\dfrac{\left(\dfrac{\sqrt{3}}{3}\right)^4+1}{\left(\dfrac{\sqrt{3}}{3}\right)^4}\)
\(=\dfrac{\dfrac{9}{81}+1}{\dfrac{9}{81}}\)
\(=\dfrac{\dfrac{1}{9}+1}{\dfrac{1}{9}}\)
\(=\dfrac{10}{9}:\dfrac{1}{9}\)
\(=10\)