Lời giải:
$x+\frac{1}{x}=3\Rightarrow (x+\frac{1}{x})^2=9$
$\Leftrightarrow x^2+2+\frac{1}{x^2}=9$
$\Leftrightarrow x^2+\frac{1}{x^2}=7$
$\Leftrightarrow \frac{x^4+1}{x^2}=7$
$\Leftrightarrow E=\frac{x^2}{x^4+1}=\frac{1}{7}$
Lời giải:
$x+\frac{1}{x}=3\Rightarrow (x+\frac{1}{x})^2=9$
$\Leftrightarrow x^2+2+\frac{1}{x^2}=9$
$\Leftrightarrow x^2+\frac{1}{x^2}=7$
$\Leftrightarrow \frac{x^4+1}{x^2}=7$
$\Leftrightarrow E=\frac{x^2}{x^4+1}=\frac{1}{7}$
tính giá trị biểu thức A = x^2 + 4x -7
biết a) x=5
b) x thỏa mãn x+1/4 =3/4
cho 3 số x,y,z thỏa mãn x-1/2014= y-1/2016 = z-1/2018
tính giá trị biểu thức N = 4(x-y)(y-z) - (z-x)2
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
1 Cho x,y là các số thỏa mãn I x-3 I + (y+4)^2 = 0
2 Số các giá trị nguyên của x thỏa mãn
2(IxI- 5) ( x^2 -9) =0
3 Nếu 1/2 của a bằng 2b thì 9/8a = kb . Vậy kb =
4 Số giá trị của x thỏa mãn
x^2 +7x +12 = 0
5 Biết (a+1) (b+1) = 551 khi đó giá trị của biểu thức ab+a+b = ?
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0. Tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+ y)^2017
Cho x,y là các số thực thỏa mãn x/2=y/3. Tính giá trị của biểu thức sau: T=2x^2-y^2/2x^2+y^2
Giup mình với
cho 2 số x, y thỏa mãn (y-1) ^2024+|x+y-1|=0 tính giá trị của biểu thức A=x^2024+y^2024
Cho hai số x,y thỏa mãn (x-2)^2016 + |y+1| = 0 tính giá trị biểu thức A= 2.x^2.y^2016 - 3.(x+y)^2017
cho các số x y thỏa mãn (x-2)^4+(2y-1)^2022 bé hơn hoặc bằng 0 Tính giá trị cua biểu thức M=11xy^2+4xy^2