Ta có:
\(x=\frac{2}{2\sqrt[3]{2}+2\sqrt[3]{4}}=\frac{1}{\sqrt[3]{2}+\sqrt[3]{4}}=\)\(\frac{2\sqrt[3]{2}-2+\sqrt[3]{4}}{6}\)
\(y=\frac{6}{2\sqrt[3]{2}-2+\sqrt[3]{4}}=\frac{6\left(\sqrt[3]{2}+\sqrt[3]{4}\right)}{6}\)
\(\Rightarrow xy^3-x^3y=xy\left(y^2-x^2\right)=y^2-x^2=\frac{36\left(\sqrt[3]{4}+4+2\sqrt[3]{2}\right)}{36}\)\(-\frac{4\sqrt[3]{4}+4+2\sqrt[3]{2}-8\sqrt[3]{2}+8-4\sqrt[3]{4}}{36}\)\(=\frac{36\sqrt[3]{4}+144+72\sqrt[3]{2}-12+6\sqrt[3]{2}}{36}=\frac{36\sqrt[3]{4}+78\sqrt[3]{2}+132}{36}\)\(=\frac{6\sqrt[3]{4}+13\sqrt[3]{2}+22}{6}\)