\(\Leftrightarrow\left(x-2\right)\left(x^2-2x-2\right)=0\Rightarrow\left[{}\begin{matrix}x=2\\x^2-2x-2=0\end{matrix}\right.\)
Không mất tính tổng quát, giả sử \(x_3=2\) và \(x_1;x_2\) là nghiệm của \(x^2-2x-2=0\)
Do \(2^n\) nguyên nên ta chỉ cần chứng minh \(P\left(n\right)=x_1^n+x_2^n\) nguyên
\(P\left(1\right)=x_1+x_2=2\in Z\) thỏa mãn
\(P\left(2\right)=x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=8\in Z\) thỏa mãn
\(P\left(1\right).P\left(n\right)=\left(x_1+x_2\right)\left(x_1^n+x_2^n\right)=x_1^{n+1}+x_2^{n+1}+x_1x_2\left(x_1^{n-1}+x_2^{n-1}\right)\)
\(\Leftrightarrow2P\left(n\right)=P\left(n+1\right)-2P\left(n-1\right)\)
\(\Leftrightarrow P\left(n+1\right)=2P\left(n\right)+2P\left(n-1\right)\)
\(P\left(1\right);P\left(2\right)\) nguyên \(\Rightarrow P\left(3\right)\) nguyên \(\Rightarrow P\left(4\right)\) nguyên \(\Rightarrow...\Rightarrow P\left(n\right)\) nguyên với mọi n (đpcm)