cho tứ giác ABCD nội tiếp (O). S là điểm chính giữa của cũng AB . SC và SD cắt AB tại E và F
a CMR tứ giác CDEF nội tiếp
b CMR SO là phần giác góc ASB
c DE và CF kéo dài cắt (O) tại M và N. CMR SO vuông góc với MN
Cho tứ giác ABCD nội tiếp trên đường tròn tâm O, S là điểm chính giữa cungAB, SC, SD cách AB ở E và F a) cm: tứ giác CDFE nội tiếp. b)cm: SO là tia phân giác của góc ASD
Cho tứ giác ABCD nội tiếp đường tròn tâm O ,M là điểm chính giữa của cung AB.Nối M với D,M với C cắt AB lần lượt ở E và P.Chứng minh tứ giác PEDC nói tiếp được đường tròn
2 tiếp tuyến ại B và C của 1 đường tròn tâm O cắt nhau tại A,lấy điểm M thuộc dây DC sao cho MB >MC. Đường thẳng vuông góc với OM tại M. Cắt AB ở I, cắt AC kéo dài ở K, C/m:
A, tứ giác OMIB và OMCK nội tiếp
B,góc OIM= góc OKM, M là trung điểm IK.
giúp mình với mai mình thi rồi:((
BÀI 1 cho tam giác ABC vuông tại A .Nữa đường tròn đường kính AB cắt BC tại D.Trên cung AD lấy một điểm E .Nối BE và kéo dài AC tại F.Chứng minh tứ giác CDEF nội tiếp
BÀI 2: Cho đường tròn tâm O đường kính AB cố định ,CD là đường kính thay đổi của đường tròn (O) ( khác AB ) .Tiếp tuyến tại B của (O ) cắt AC và AD lần lượt tại N và M .Chứng minh tứ giác CDMN nội tiếp
BÀI 3 :Cho hai đoạn thẳng MN và PQ cắt nhau tại O .Biết OM.ON= PO.OQ.Chứng minh tứ giác MNPQ nội tiếp
BÀI 4: Cho tam giác ABC có đường cao AH . Gọi M, N lần lượt là hình chiếu vuông góc của H lên các cạnh AB, AC
a) c/m AMHN nội tiếp
b) BMNC nội tiếp
BÀI 5: Cho tam giác ABC các đường phân giác trong là BE và CF cắt nhau tại M và các đường phân giác ngoài của các góc B và góc C cắt nhau tại N .chứng minh BMCN nội tiếp
BÀI 6: Cho đường tròn (O) đường kính AB .Gọi M là một điểm trên tiếp tuyến xBy , đường thẳng AM cắt đường tròn (O) tại C , lấy D thuộc BM, nối AD cắt (O) tại I. c/m CIDM nội tiếp
BÀI 7: Cho đường tròn tâm (O) có cung EH và S là điểm chính giữa cung đó .Trên dây EH lấy hai điểm A và B .Các đường thẳng SA và SB cắt đường tròn lần lượt tại D và C .c/m ABCD là tứ giác nội tiếp
BÀI 8: Cho đường tròn (O) đường kính AB , từ A và B vẽ Ax vuông góc AB và By vuông góc BA (Ax và By cùng phía so với bờ AB ) .Vẽ tiếp tuyến x'My' (tiếp điểm M) cắt Ax tại C và By tại D ; OC cắt AM tại I và OD cắt BM tại K .Chứng minh CIKD nội tiếp
Cho đường tròn (O;R) và dây MN cố định. Gọi A là điểm chính giữa của cung lớn MN, đường kính AB cắt MN tại E. Lấy điểm C thuộc MN sao cho C khác M, N, E và BC cắt đường tròn (O;R) ở K. Chứng minh rằng:
a) Tứ giác KAEC nội tiếp
b) \(BM^2\) = BC.BK
cho nửa đường tròn tâm O đường kính AB. M là điểm bất kì trên cung AB, vẽ MD vuông góc vs AB, trên cung MB lấy C, tiếp tuyến tại C của nửa đường tròn cắt DM tại I;DM cắt AC tại E và cắt BC kéo dài tại F
1)CM: tứ giác BCED: ADCF nội tiếp
2) CM : góc MEC=góc ABC
3) CM: I là tâm đường tròn ngoại tiếp △FEC
giúp mik giải bài này vs mik đag cần gấp
cho đt (o) đường khính AB vẽ dây cung CD vuông góc với AB ở I ( I nằm giữa A và O ) lấy M trên cung nhỏ BC (M khắc B và C) AM cắt CD ở N. chứng minh: a. BMNI là tứ giác nội tiếp đường tròn b. AM*AN=AC^2 c. tâm đường tròn ngoại tiếp tam giác CMN thuocoj đương thẳng BC
1, Cho tam giác ABC nội tiếp (O) đường kính AD. Qua D kẻ tiếp tuyến với đường tròn cắt BC kéo dài tại P. Đường thẳng PO cắt AB, AC ở N, M. Chứng minh rằng OM = ON.
2, Cho tam giác ABC trực tâm H. Gọi A',B',C' là trung điểm của BC, CA, AB. Vẽ 3 đường tròn bằng nhau có tâm A, B, C. (A) cắt B'C' tại D và D'; (B) cắt A'C' tại E và E'. (C) cắt A'B' ở K và K'. CMR: 6 điểm D,D',E,E',K,K' thuộc 1 đường tròn.
3, Cho tam giác ABC nội tiếp (O). Phân giác góc A cắt (O) tại M, vẽ đường kính MN. Phân giác góc B, góc C cắt AN tại P, Q. CMR tứ giác PCBQ nội tiếp