Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Mèo Dương

cho nửa đường tròn tâm O đường kính AB. M là điểm bất kì trên cung AB, vẽ MD vuông góc vs AB, trên cung MB lấy C, tiếp tuyến tại C của nửa đường tròn cắt DM tại I;DM cắt AC tại E và cắt BC kéo dài tại F

1)CM: tứ giác BCED: ADCF nội tiếp

2) CM : góc MEC=góc ABC

3) CM: I là tâm đường tròn ngoại tiếp △FEC

giúp mik giải bài này vs khocroikhocroi mik đag cần gấp

Nguyễn Lê Phước Thịnh
17 tháng 11 2023 lúc 11:35

1: Xét (O) có

ΔACB nội tiếp

AB là đường kính

Do đó: ΔACB vuông tại C

=>AC\(\perp\)CB tại C

=>AC\(\perp\)BF tại C

Xét tứ giác EDBC có

\(\widehat{EDB}+\widehat{ECB}=90^0+90^0=180^0\)

=>EDBC là tứ giác nội tiếp

Xét tứ giác ADCF có

\(\widehat{ADF}=\widehat{ACF}=90^0\)

=>ADCF là tứ giác nội tiếp

2: EDBC là tứ giác nội tiếp

=>\(\widehat{DEC}+\widehat{DBC}=180^0\)

mà \(\widehat{DEC}+\widehat{IEC}=180^0\)(kề bù)

nên \(\widehat{IEC}=\widehat{DBC}\)

3: \(\widehat{IEC}=\widehat{DBC}=\dfrac{1}{2}\cdot sđ\stackrel\frown{AC}\)(góc DBC là góc nội tiếp chắn cung AC)

\(\widehat{ICE}=\dfrac{1}{2}\cdot sđ\stackrel\frown{CA}\)(góc ICE là góc tạo bởi tiếp tuyến IC và dây cung CA)

Do đó: \(\widehat{IEC}=\widehat{ICE}\)

=>IE=IC

\(\widehat{IEC}+\widehat{IFC}=90^0\)(ΔFCE vuông tại C)

\(\widehat{ICE}+\widehat{ICF}=\widehat{FCE}=90^0\)

mà \(\widehat{IEC}=\widehat{ICE}\)

nên \(\widehat{IFC}=\widehat{ICF}\)

=>IF=IC

mà IC=IE

nên IF=IC=IE

=>I là tâm đường tròn ngoại tiếp ΔCFE


Các câu hỏi tương tự
Trang Trần
Xem chi tiết
Nguyễn Quốc Trung
Xem chi tiết
Steve 789
Xem chi tiết
Luật Nhân Quả
Xem chi tiết
phạm hoàng
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
Nguyễn Tuấn
Xem chi tiết
fan FA
Xem chi tiết
Phạm Tường Vi
Xem chi tiết