Đáp án D.
Giả sử cạnh của tứ diện là a.
Gọi H là tâm đường tròn ngoại tiếp Δ B C D ⇒ A H ⊥ B C D
Ta có A B ∩ B C D = B và A H ⊥ B C D ⇒ A B , B C D ^ = A B , B H ^ = A B H ^
Ta có B H = 2 3 . a 3 2 = a 3 3 ⇒ cos A B H ^ = B H A B = 3 3
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Đáp án D.
Giả sử cạnh của tứ diện là a.
Gọi H là tâm đường tròn ngoại tiếp Δ B C D ⇒ A H ⊥ B C D
Ta có A B ∩ B C D = B và A H ⊥ B C D ⇒ A B , B C D ^ = A B , B H ^ = A B H ^
Ta có B H = 2 3 . a 3 2 = a 3 3 ⇒ cos A B H ^ = B H A B = 3 3
Cho tứ diện đều ABCD cạnh a. Gọi φ là góc giữa đường thẳng AB và mặt phẳng (BCD). Tính cosφ .
A. cosφ = 3 3
B. cosφ = 2 3
C. cosφ = 1 2
D. cosφ = 3 2
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SAB là tam giác đều và (SAB) vuông góc với (ABCD). Tính cos φ với φ là góc tạo bởi (SAC) và (SCD).
A. 2 7
B. 6 7
C. 3 7
D. 5 7
Tứ diện ABCD có tam giác BCD đều cạnh a, AB vuông góc với mặt phẳng B C D , A B = 2 a . M là trung điểm của AD, gọi φ là góc giữa đường thẳng CM với mp(BCD), khi đó:
A. tan φ = 3 2
B. tan φ = 2 3 3
C. tan φ = 3 2 2
D. tan φ = 6 3
Cho tứ diện đều ABCD. Gọi φ là góc giữa hai mặt phẳng ( BCD) và ( ABC) Khẳng định nào sau đây là đúng?
A. tan φ = 1 3
B. φ = 60 °
C. c o s φ = 1 3
D. φ = 30 °
Trong không giam Oxyz, cho mặt phẳng (P) có phương trình 2x-y+2z+1=0, đường thẳng d có phương trình x - 1 - 1 = y - 2 = z + 2 2 . Gọi φ là góc giữa đường thẳng d và mặt phẳng (P). Tính giá trị cos φ
A. cos φ = 6 / 9
B. cos φ = 65 9
C. cos φ = 9 65 65
D. cos φ = 4 / 9
Cho tứ diện ABCD với A C = 3 2 A D , C A B ^ = D A B ^ = 60 ° , C D = A D . Gọi φ là góc giữa hai đường thẳng AB và CD. Chọn khẳng định đúng về góc φ
A. φ = 30 °
B . φ = 60 °
C. cos φ = 1 4
D. cos φ = 3 4
Cho hình lập phương ABCD. A ' B ' C ' D ' , gọi φ là góc giữa hai mặt phẳng ( A ' BD) và (ABC). Tính tan φ
A. tan φ = 1 2
B. tan φ = 2
C. tan φ = 2 3
D. tan φ = 3 2
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a, gọi φ là góc giữa hai mặt phẳng S A B v à C S D . Tính cos φ
A. cos φ = 1 2
B. cos φ = 1 6
C. cos φ = 1 3
D. cos φ = 1 4
Cho tứ diện ABCD có BD vuông góc với AB và CD. Gọi P và Q lần lượt là trung điểm của của các cạnh CD và AB thỏa mãn BD:CD:PQ:AB = 3:4:5:6 . Gọi φ là góc giữa hai đường thẳng AB và CD. Giá trị của cosφ bằng
A. 7/8.
B. 1/2.
C. 11/16.
D. 1/4.
Cho khối chóp tứ giác đều S.ABCD, gọi α mặt phẳng qua A và vuông góc SC.
Biết rằng diện tích thiết diện tạo bởi α là hình chóp bằng nửa diện tích đáy ABCD. Tính
góc φ tạo bởi cạnh bên SC và mặt đáy.
A. φ = arcsin 1 + 33 8
B. φ = arcsin 33 − 1 8
C. φ = arcsin 1 + 29 8
D. φ = arcsin 29 − 1 8