a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
a: Xét tứ giác BHCD có
M là trung điểm của BC
M là trung điểm của HD
Do đó: BHCD là hình bình hành
4) Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
a. Chứng minh tứ giác BHCD là hình bình hành
b. Chứng minh các tam giác ABD vuông tại B, ACD vuông tại C
4) Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
a. Chứng minh tứ giác BHCD là hình bình hành
b. Chứng minh các tam giác ABD vuông tại B, ACD vuông tại C
1.Cho hình thang vuông ABCD (góc A bằng góc B bằng 90 độ). M là trung điểm đối xứng với B qua AD, I là giao điểm của CH và AD. Chứng minh góc AIB = góc DIC
2.Cho A nhọn tam giác ABC có góc A bằng 60 độ, trực tâm H. M là điểm đối xứng qua BC. Chứng minh tam giác BHC bằng tam giác BMC
3. Cho tam giác ABC cân tại A. M là trung điểm của BC. Trên AB lấy điểm D, trên AC lấy điểm E sao cho BD bằng CE
4. Cho tam giác nhọn ABC có góc A bằng 70 độ, điểm D thuộc BC. E là điểm đối xúng với D qua AB, F là điểm đối xứng với D qua AC. Đường thẳng EF cắt AB và AC, theo thứ tự tại M, N. Tính các góc của tam giác AEF ?
Các bạn vẽ hình cho mình với nha
Bài 1 : Cho tam giác nhọn ABC , gọi H là trực tâm tam giác , M là trung điểm BC . Gọi D là điểm đối xứng của H qua M .
a ) Chứng minhcác tam giác ABD và ACD vuông
b ) Gọi I là trung điểm AD . Chứng minh IA = IB =IC = ID
Bài 2 : Cho tam giác ABC vuông tại A có góc B bằng 60 độ , kẻ Ax song song BC . Trên tia Ax lấy điểm D sao cho : AD =DC
a ) Tính các góc BAD và góc DAC
b ) Chứng minh tứ giác ABCD là hình thang cân
c ) Gọi E là trung điểm BC . Chứng minh ADEB là hình thoi
Bài 3 : Cho hình vuông ABCD , E là trung điểm trên cạnh DC , F là điểm trên tia đối tia BC sao cho BF = DE .
a) Cminh : tam giác AEF vuông cân
b ) Gọi I là trung điểm EF . Chứng minh I thuộc BD
c ) Lấy K đối xứng A qua I . Chứng minh AEFK là hình vuông ( Hướng dẫn : Từ E kẻ EP // BC , P thuộc BD
Cho tam giác nhọn ABC. Gọi H là trực tâm của tam giác, M là trung điểm của BC. Gọi D là điểm đối xứng của H qua M.
a/ Chứng minh tứ giác BHCD là hình bình hành.
b/ Chứng minh các tam giác ABD, ACD vuông tại B, C.
c/ Gọi I là trung điểm của AD. Chứng minh rằng: IA = IB = IC = ID.
cho tam giác nhọn ABC (tam giác có 3 góc nhọn)có AB<AC. Kẻ trung tuyến AM. Trên tia AM lấy điểm D sao cho MA=MD.
a) chứng minh tứ giác ABDC là hình bình hành
b)Gọi E là điểm đối xứng của A qua đường thẳng BC.Gọi H là giao điểm của AE và BC. Chứngminh AE vuông góc với ED.
c)cm tứ giác BCDE là hình thang cân
Cho tam giác ABC có 3 góc nhọn và AB < AC. Các đường cao BE, CF
cắt nhau tại H. Gọi M là trung điểm của BC. Trên tia đối của MH lấy điểm K sao cho
HM = MK.
a) Chứng minh: Tứ giác BHCK là hình bình hành.
b) Chứng minh BK AB ⊥ và CK AC ⊥
c) Gọi I là điểm đối xứng với H qua BC. Chứng minh: Tứ giác BIKC là hình thang
cân
d) BK cắt HI tại G. Tam giác ABC phải có thêm điều kiện gì đề tứ giác GHCK là hình
thang cân.
Cho tam giác ABC, gọi H là trực tâm. Gọi H' đối xứng vơi H qua BC. Gọi I là trung điểm của BC, trên tia đối của tia IH lấy K sao cho IH=IK. a) Cm tam giác BHC= tam giác BH'C b) cm tứ giác BH'KC là hình thang cân
Cho tam giác ABC nhọn. Các đường cao AF, BE, CG cắt nhau tại H. M là trung điểm của BC. Trên tia đối của tia MH lấy điểm D sao cho M là trung điểm của HD. a) Chứng minh rằng: tứ giác BHCD là hình bình hành. b)Chứng minh rằng: tam giác ABD vuông tại B. tam giác ACD vuông tại C. c)Gọi I là trung điểm của AD. Chứng minh rằng: IA=IB=IC=ID.