Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kẻ Bí Ẩn

Cho tam giác ABC nhọn. Các đường cao AF, BE, CG cắt nhau tại H. M là trung điểm của BC. Trên tia đối của tia MH lấy điểm D sao cho M là trung điểm của HD. a) Chứng minh rằng: tứ giác BHCD là hình bình hành. b)Chứng minh rằng: tam giác ABD vuông tại B. tam giác ACD vuông tại C. c)Gọi I là trung điểm của AD. Chứng minh rằng: IA=IB=IC=ID.

 

Nguyễn Lê Phước Thịnh
22 tháng 10 2023 lúc 7:38

a: Xét tứ giác BHCD có

M là trung điểm chung của BC và HD

=>BHCD là hình bình hành

b: BHCD là hình bình hành

=>BH//CD và BD//CH

BH//CD

CA\(\perp\)BH

Do đó: \(CA\perp\)CD

=>ΔACD vuông tại C

BD//CH

AB\(\perp\)CH

Do đó: AB\(\perp\)BD

=>ΔABD vuông tại B

c: ΔBAD vuông tại B

mà BI là đường trung tuyến

nên IB=IA=ID(1)

ΔCAD vuông tại C

mà CI là đường trung tuyến

nên CI=IA=ID(2)

Từ (1) và (2) suy ra IA=IB=IC=ID

Phạm Tiến Đạt
18 tháng 10 lúc 22:38

a) Chứng minh tứ giác BHCD là hình bình hành:

Xét tứ giác BHCD:

    M là trung điểm của BC (gt)

   M là trung điểm của HD (gt)

    *Nên hai đường chéo BC và HD cắt nhau tại trung điểm của mỗi đường.

    * Vậy tứ giác BHCD là hình bình hành (dấu hiệu nhận biết hình bình hành: hai đường chéo cắt nhau tại trung điểm mỗi đường).

b) Chứng minh tam giác ABD vuông tại B và tam giác ACD vuông tại C:

 

Xét hình bình hành BHCD:

   BH // CD (tính chất hình bình hành)

   CH // BD (tính chất hình bình hành)

Xét tam giác ABC:

    * AF là đường cao (gt) => AF vuông góc với BC

    * Mà BH // CD (cmt) => AF vuông góc với CD

Tương tự:

     CH // BD (cmt) => AF vuông góc với BD

Kết luận:

    * Tam giác ABD vuông tại B (AF vuông góc với BD)

    * Tam giác ACD vuông tại C (AF vuông góc với CD)

 

**c) Chứng minh IA=IB=IC=ID:**

 

* **Xét tam giác AHD:**

    * M là trung điểm của HD (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác AHD

    * Vậy IA = ID (tính chất đường trung tuyến trong tam giác)

* **Xét tam giác BCD:**

    * M là trung điểm của BC (gt)

    * I là trung điểm của AD (gt)

    * Nên IM là đường trung tuyến của tam giác BCD

    * Vậy IB = IC (tính chất đường trung tuyến trong tam giác)

* **Kết luận:**

    * IA = IB = IC = ID

 

**Tóm lại:**

 

* Tứ giác BHCD là hình bình hành.

* Tam giác ABD vuông tại B và tam giác ACD vuông tại C. 

* IA = IB = IC = ID.

 


Các câu hỏi tương tự
Bùi Tấn Sỹ
Xem chi tiết
Nguyễn Khánh Linh
Xem chi tiết
hồ hoàng anh
Xem chi tiết
Trần Phươnganh
Xem chi tiết
Trần Phươnganh
Xem chi tiết
Đỗ Thị Quỳnh Như
Xem chi tiết
Trương Vân Anh
Xem chi tiết
Thúy An
Xem chi tiết
Huong Giang
Xem chi tiết