Xét ΔCMB vuông tại M và ΔCMA vuông tại M có
CB=CA
CM chung
=>ΔCMB=ΔCMA
=>CB=CA
Xét ΔCBA có
CB=CA
góc B=60 độ
=>ΔCBA đều
Xét ΔCMB vuông tại M và ΔCMA vuông tại M có
CB=CA
CM chung
=>ΔCMB=ΔCMA
=>CB=CA
Xét ΔCBA có
CB=CA
góc B=60 độ
=>ΔCBA đều
Cho tam giác ABC vuông tại A. Gọi M là trung điểm của AC. Trên tia đối của tia MB lấy điểm D sao cho MD = MB 1) Chứng minh tam giác ABM bằng tam giác CDM 2) Chứng minh Ac vuông góc với DC 3) Gọi E là trung điểm của BC, tia EM cắt AD tại F. chứng minh F là trung điểm của AD.
Cho tam giác ABC có góc A=90 độ,M là trung điểm của AC . Trên tia đối của tia MB lấy điểm K sao cho MK= MB . Chứng minh rằng:
a) KC vuông góc với AC .
b) AK song song với BC .
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài Toán:Cho tam giác ABC vuông tại A.Gọi M là trung điểm của cạnh AC; trên tia đối tia MB lấy điểm E sao cho ME=MB
a) Cm: tam giác AMB = tam giác CME
b) So sánh CE và BC
c) So sánh góc ABM và góc MBC
d) Cm: AE // BC
giải giúp m với mình đang gấp
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
Cho tam giác ABC cân tại A. Gọi M là trung điểm của AC. Trên tia đối MB lấy D sao cho DM = BM.
a, Chứng minh tam giác BMC = tam giác DMA. Suy ra AD//BC?
b, Tam giác ACD cân.
c, Trên tia đối CA lấy E sao cho CA = CE. Chứng minh: DC đi qua trung điểm I của BE.
Bản sửa lại của bài hỏi 2 tiếng trước
Cho tam giác ABC, M là trung điểm của AC. Phía ngoài tam giác ABC dựng hình vuông BCKL, ABDE. Lấy điểm Q trên tia đối của tia MB sao cho MB=MQ
Chứng minh:
a)DL=BQ
b)DL=BM
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
Cho tam giác ABC, trên hai cạnh AB, AC lấy hai điểm D và E sao cho
BD = CE. Gọi M là trung điểm DE. Trên tia đối của tia MB lấy điểm F sao cho MF = MB
a, Chứng minh tam giác MDB = tam giác MEF
b, Chứng minh tam giác CEF cân
c, Kẻ phân giác AK của góc BAC. Chứng minh AK // CF
B19