Áp dụng hệ thức lượng vào tam giác vuông EGH có đường cao EH
\(\dfrac{1}{EH^2}=\dfrac{1}{EG^2}+\dfrac{1}{EF^2}\)
\(\dfrac{1}{30^2}=\dfrac{1}{\left(\dfrac{6EF}{5}\right)^2}+\dfrac{1}{EF^2}\)
\(\Rightarrow EF=5\sqrt{61}\)\(\Rightarrow EG=\dfrac{6.5\sqrt{61}}{5}=6\sqrt{61}\)
Áp dụng định lí Pytago vào tam giác GEF vuông tại E
\(\Rightarrow GF=\sqrt{\left(5\sqrt{61}\right)^2+\left(6\sqrt{61}\right)^2}=61\)
Áp dụng định lí Pytago vào tam giác EHG vuông tại H
\(GH=\sqrt{\left(6\sqrt{61}\right)^2-30^2}=36\)
\(\Rightarrow HF=61-36=25\)