\(1,\dfrac{2}{\sqrt{5}+2}+\dfrac{2}{\sqrt{5}-2}=\dfrac{2\sqrt{5}-4+2\sqrt{5}+4}{\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)}=4\sqrt{5}\\ 2,\)
a, \(EF=EH+FH=5\left(cm\right)\)
Áp dụng HTL: \(\left\{{}\begin{matrix}DE^2=HE\cdot EF=5\\DF^2=HF\cdot EF=20\\DH=FH\cdot EH=4\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}DE=\sqrt{5}\left(cm\right)\\DF=2\sqrt{5}\left(cm\right)\\DH=2\left(cm\right)\end{matrix}\right.\)
b, \(\sin\widehat{E}=\dfrac{DF}{EF}=\dfrac{2\sqrt{5}}{5};\cos\widehat{E}=\dfrac{DE}{EF}=\dfrac{\sqrt{5}}{5}\)
\(\tan\widehat{E}=\dfrac{DF}{DE}=\dfrac{2\sqrt{5}}{\sqrt{5}}=2;\cot\widehat{E}=\dfrac{1}{\tan\widehat{E}}=\dfrac{1}{2}\)