a: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có
góc EMN chung
=>ΔMEN đồng dạng với ΔMFP
b: Xét ΔDPH vuông tại D và ΔDMN vuông tại D có
góc DPH=góc DMN
=>ΔDPH đồng dạng với ΔDMN
=>DH/DN=PH/MN
=>DH*MN=PH*DN
a: Xét ΔMEN vuông tại E và ΔMFP vuông tại F có
góc EMN chung
=>ΔMEN đồng dạng với ΔMFP
b: Xét ΔDPH vuông tại D và ΔDMN vuông tại D có
góc DPH=góc DMN
=>ΔDPH đồng dạng với ΔDMN
=>DH/DN=PH/MN
=>DH*MN=PH*DN
Cho tam giác MNP nhọn, kẻ hai đường cao NE và PF cắt nhau tại H. Chứng minh rằng:
1) tam giác MEN ∽ tam giác MFP 2) tam giác NFH ∽ tam giác PEH
3) tam giác MEF ∽ tam giác MNP 4) tam giác HEF ∽ tam giác HPN
) Cho tam giác ABC có các góc đều nhọn. Các đường cao AD, BE, CF cắt nhau tại H.
1) Chứng minh rằng: AE.AC = AF.AB
2) Chứng minh rằng tam giác AFE đồng dạng tam giác ACB
3) Chứng minh rằng tam giác FHE đồng dạng tam giác BHC
4) Chứng minh rằngBF.BA+CE.CA = BC2
Cho tam giac ABC có 3 góc nhọn . Đường cao AD,BE của tam giác ABC cắt nhau tại H.
a) chứng minh: tam giác ADC đồng dạng tam giác BEC
b)Chứng minh : HA*HD=HB*HE
c) đường phân giác của góc ACB cắt đường cao EF của tam giác EBC và đoạn thẳng BE lần lượt tại N và M. Chứng minh NF/NE=ME/MB
Cho tam giác ABC có 3 góc nhọn, các đường cao AD, BE, CF cắt nhau tại H a) Chứng minh tam giác ABE ~ tam giác ACF b) Chứng minh DB.DC=DH.DA
Cho tam giác MNP có các góc nhọn, 2 đg cao NE & PF ( E thuộc MP, F thuộc MN)
a) C/m: tam giác MEN đồng dạng vs tam giác MFP
b)C/m: góc MEF = góc MNP
Cho tam giác ABC có 3 góc nhọn, các đường cao BD,CE của tam giác cắt nhau tại H. Chứng minh rằng :
a) Tam giác ABD đồng dạng với tam giác ACE.
b) HE.HC=HD.HB.
c) Kẻ đường vuông góc với AB tại B và đường vuông góc với AC tại C cắt nhau tạ K. Gọi M là trung điểm của BC. Chứng minh: Ba điểm H,M,K thẳng hàng.
cho tam giác ABC có 3 góc đều nhọn. các đường cao BP, CQ cắt nhau tại H, chứng minh rằng ^HQP=^HBC
cho tam giác ABC có 3 góc nhọn, các đường cao BD, CE của tam giác cắt nhau tại H. chứng minh rằng:
a) tam giác ABC đồng dạng với tam giac ACE
b) HE.HC=HD.HB
c) kẻ đường vuông góc với AB tại B đường vuông góc voi AC tại C cắt nhau tại K. gọi M là trung điểm cua BC. chứng minh: ba điểm H,M,K thẳng hàng