a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
a: Xét ΔADC có \(AC^2=AD^2+DC^2\)
nên ΔADC vuông tại D
b: Xét ΔABC có
AD là đường cao
AD là đường phân giác
Do đó: ΔABC cân tại A
c: Xét ΔBCE có
BA là đường cao
BA=CE/2
Do đó: ΔBCE vuông tại C
Cho tam giác ADC, biết AD=4 cm; CD=3 cm; AC=5 cm.
a)C/m: tam giác ADC vuông
b)Vẽ tia Ax sao cho AD là phân giác của góc CAx ; Ax cắt
tia CD tại B. C/m: tam giác ABC cân.
c)Trên tia đối của tia AB lấy điểm E, sao cho AE=AC
C/m: EC//AD và tam giác BCE vuông
Cho tam giác ADC, biết AD=4 cm; CD=3 cm; AC=5 cm.
a)C/m: tam giác ADC vuông
b)Vẽ tia Ax sao cho AD là phân giác của góc CAx ; Ax cắt
tia CD tại B. C/m: tam giác ABC cân.
c)Trên tia đối của tia AB lấy điểm E, sao cho AE=AC
C/m: EC//AD và tam giác BCE vuông
(Chưa học đường cao)
Cho tam giác ADC, biết AD=4 cm; CD=3 cm; AC=5 cm.
a)C/m: tam giác ADC vuông
b)Vẽ tia Ax sao cho AD là phân giác của góc CAx ; Ax cắt
tia CD tại B. C/m: tam giác ABC cân.
c)Trên tia đối của tia AB lấy điểm E, sao cho AE=AC
C/m: EC//AD và tam giác BCE vuông
( chứng minh EC // AD !😥)
1. Cho x'x//y'y, MN cắt x'x tại M, y'y tại N. E, F thuộc y'y về 2 phía của N : NE =NF=MN.CMR:a) ME, MF là 2 tia phân giác của góc xMN, x'MN b) tam giác MEF vuông
2. Cho tam giác ABC cân tại A, trên tia đối của tia BC lấy điểm D ,E sao cho CE=BD . Nối AD, AE. So sánh góc ABD với ACE. CM tam giác ADE cân
3. CHOtam giác ABC tia phân giác góc B, C cắt nhau tại O. Qua O kẻ đường thẳng song song với BC, cắt AB tại D, cắt AC tại E. CM DE =DB +EC
4. CHO TAM GIÁC ABC VUÔNG TẠI A và góc B =60°. Cx vuông góc với BC, trên tia Cx lấy đoạn CE=CA ( CE, CA CÙNG PHÍA VỚI BC ). KÉO DÀI CB LẤY F : BF =BA. CM TAM GIÁC ABC ĐỀU VÀ 3 ĐIỂM E, A, F THẲNG HÀNG
5. Cho tam giác ABD : góc B=2D, kẻ AH vuông góc với BD (H thuộc BD ). Trên tia đối của tia BA lấy BE =BH. Đường thẳng EH cắt AD tại F. CM FH=FA =FD
6. Cho tam giác ABC cân tại A, đường cao AH. Trên tia AH lấy điểm D sao cho H là trung điểm của đoạn thẳng AD. Nối CD. CM CD=AB và CB là tia phân giác của góc ACD
7. CHO tam giác ABC cân tại A, đường cao BH. CMR góc BAC =2 CBH
8. Cho tam giác ABC có góc B =60, 2 tia phân giác AD và CE của tam giác cắt nhau tại I. CMR tam giác IDE cân
9. Cho tam giác ABC cân tại A, đường cao AH, HD, HE lần lượt là đường cao của tam giác AHB, AHC. trên tia đối của tia DH, EH lấy điểm M, N: DM=DB, EN =EH.CMR: a) tam giác AMN và tam giác HMN cân b) góc MAN=2BAC
Giúp mình mấy bài này với! Thank you!
Bài 1: Cho tam giác ABC vuông tại A. Trên cạnh AB lấy điểm D, trên cạnh AC lấy điểm E sao cho AD=AE, các đường thẳng vuông góc vẽ từ A và E với CD cắt BC ở G và H. Đường thẳng EH và đường thẳng AB cắt nhau ở M. Đường thẳng vẽ từ A song song với BC cắt HM tại I. CMR:
a) tam giác ACD= tam giác AME
b) tam giác AGB= tam giác MIA
c) BG=GH
Bài 2: Cho tam giác ABC có Â=120 độ, kẻ tia phân giác Ax của Â. Trên tia Ax lấy điểm E sao cho AE=AB+AC. Trên tia AX lấy điểm D sao cho AD=AB. Chứng minh:
a) Tam giác ABD đều
b) Tam giác ABC=Tam giác DBE
c) Tam giác BCE đều
Cho tam giác ABC . Có góc A <90°. Trên nửa mặt phẳng bờ AB chứa điểm C. Vẽ tia Ax vuông góc với AB,lấy D thuộc Ax sao cho AD=AB.Tredn nửa mặt phẳng bờ AC lấy điểm B. Vẽ tia Ay vuông góc với AC . Lấy E thuộc Ay sao cho AC=AE
a) CM tam giác ADC = ABE
b) CM BE=CD
c) CM BE vuông góc với CD
Cho góc A <90 độ,về phía ngoài tam giác ABC dựng tia Ax vuông góc AB,Ay vuông góc AC.Lấy điểm D trên tia Ax sao cho AD=AB,lấy điểm E trên tia Ay sao cho AE=AC.
a)Chứng minh tam giác ADC=tam giác ABE và CD vuông góc BE.
b)Gọi M là trung điểm của BC.Chứng minh AM=1/2DE và AM vuông góc DE.
c)Vẽ AH vuông góc BC,đường thẳng AH cắt DE ở K.Chứng minh DK=KE.
Cho tam giác ABC vuông tại A ( AB < AC). Trên tia đối của tia AC lấy điểm D sao cho AD=AB. Trên tia đối của tia AB lấy điểm E sao cho AE=AC
a, CM: BC= DE
b, CM: tam giác ABD vuông cân và BD // CE
c, Kẻ đường cao AH của tam giác ABC tia AH cắt cạnh DE tại M, từ A kẻ đường vuông góc CM tại K, đường thẳng này cắt BC tại N. Cm: NM//AB
d, Cm: AE2 + AD2 = 4AM2
1. Cho tam giác ABC vuông cân tại A. M là trung điểm của BC. Lấy điểm D bất kì thuộc BC.(D khác B , C , M). Gọi H và I là thứ tự chân đường vuông góc kẻ từ B , C xuống đường thảng AD. Đường thẳng AM cắt CI tại N. CMR :
a) BH song song CI
b) BH = AI
c) Tam giác HMI vuông cân
2.Cho tam giác ABC có AB = AC = BC. M là trung điểm của BC
a) CM : Tam giác AMB = Tam giác AMC
b) Trên tia đối của tia MA lấy điểm N sao cho M là trung điểm của AN. CM : Tam giác AMB = Tam giác NMC
c)Vẽ tia Ax vuông góc AM (AM thuộc nửa mặt phẳng bờ là đường thẳng AB chứa điểm C). Trên Ax lấy điểm P sao cho AP = AC. CM : P , N , C thẳng hàng.
3. Cho tam giác ABC vuông tại A , BD là tia phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE
a) CM : DE vuông góc BE
b) CM : BE là đường trung trực của AE.
c) Kẻ AH vuông góc BC. So sánh AH và EC
GIÚP MK VS NHA MN. BÀI HÌNH HỌC NÊN NHỜ MN VẼ HỘ MK CÁI HÌNH LUÔN NHA. mƠN MN NHÌU !!!!