a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBMA=ΔBMD
=>BA=BD
b: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
BA=BD
\(\widehat{ABC}\) chung
Do đó: ΔBAC=ΔBDE
a: Xét ΔBAM vuông tại A và ΔBDM vuông tại D có
BM chung
\(\widehat{ABM}=\widehat{DBM}\)
Do đó: ΔBMA=ΔBMD
=>BA=BD
b: Xét ΔBAC vuông tại A và ΔBDE vuông tại D có
BA=BD
\(\widehat{ABC}\) chung
Do đó: ΔBAC=ΔBDE
Cho △ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD ⊥ BC (D ∈ BC).
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của 2 đường thẳng DM và BA. Chứng minh △ABC = △DBE.
c) Chứng minh ME = MC.
d) Kẻ BH ⊥ EC tại H. Chứng minh 3 điểm B, M, H thẳng hàng.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ M D ⊥ B C ( D ∈ B C ) .
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh ∆ A B C = ∆ D B E .
c) Kẻ D H ⊥ M C ( H ∈ M C ) và A K ⊥ M E ( K ∈ M E ) . Gọi N là giao điểm của hai tia DH và AK. Chứng minh MN là tia phân giác góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng.
cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC ở M. Kẻ MD vuông góc BC
a)C/M BA=BD
b)Gọi E là giao điểm của DM và BA. C/M tâm giác ABC =tam giác DBE
c)Kẻ DH vuông góc MC (H vuông góc MC) và AK vuông góc ME (K vuông góc ME). Gọi N là giao điểm của DH và AK. C/M MN là tia phân giác góc HMK.
d)C/M B,M,N thẳng hàng.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M, vẽ MD vuông góc với BC tại D. a) Chứng minh BA = BD b) Gọi E là giao điểm của hai đường thẳng AB và DM. Chứng minh ∆ABC = ∆DBE.
Cho tam giác ABC vuông tại A,tia phân giác góc B cắt cạnh AC tại M.Kẻ MD vuông góc với BC tại D.
a)Chứng minh: góc BMA = góc BMD
b)Gọi E là giao điểm của hai đường thẳng MD và BA Chứng minh:AC=DE
c)Chứng minh: Δ A M E = Δ D M C
d)Kẻ DH ⊥ MC tại H và AK ⊥ ME tại K.Hai tia DH và AK cắt nhau tại N.Chứng minh:MN là phân giác của góc KMH
e)Chứng minh:Ba điểm B,M,N thẳng hàng g)Chứng minh:BN ⊥ AD,BN ⊥ EC
h) Δ ABC thỏa mãn điều kiện gì để Δ NAD là tam giác đều
Cho △ABC vuông tại A. Tia phân giác của góc B cắt AC tại điểm M. Kẻ MD ⊥ BC (D ∈ BC).
a) Chứng minh rằng △ABM = △DBM.
b) Gọi E là giao điểm của 2 đường thẳng DM và BA. Chứng minh ME = MC.
c) Kẻ BH ⊥ EC tại H. Chứng minh rằng △ABC = △DBE và 3 điểm B, M, H thẳng hàng.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD⊥BC (D thuộc BC)
a) Chứng minh BA = BD.
b) Gọi E là giao điểm của hai đường thẳng DM và BA. Chứng minh △ABC = △DBE
c) Kẻ DH ⊥ MC ( H∈MC) và AK ⊥ ME ( K∈ME). Gọi N là giao điểm của DH và AK. Chứng minh MN là tia phân giác của góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng.
Cho tam giác ABC vuông tại A. Tia phân giác góc B cắt cạnh AC tại điểm M. Kẻ MD vuông góc với BC( D thuộc BC)
a) Chứng minh BA = BD
b) Gọi E là giao điểm của hai đường thẳng d m và B Chứng minh tam giác ABC bằng tam giác DBE.
c) kẻ BH vuông góc MC(H thuộc MC) và AK vuông góc vs ME. Chứng minh MN là tia phân giác góc HMK.
d) Chứng minh ba điểm B, M, N thẳng hàng
Cho tam giác ABC vuông tại A.Tia phân giác của góc B cắt cạnh AC tại D.Kẻ DM vuông góc với BC tại M a)Gọi giao điểm của DM và AB là E.Chứng minh rằng tam giác BEC cân b)Gọi K là trung điểm của EC.Chứng minh ba điểm B,D,K thẳng hàng