a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: góc MED=góc MEH+góc DEH
=góc MHE+góc DAH
=góc HBA+góc HAB=90 độ
a: Xét tứ giác ADHE có
góc ADH=góc AEH=góc DAE=90 độ
nên ADHE là hình chữ nhật
b: góc MED=góc MEH+góc DEH
=góc MHE+góc DAH
=góc HBA+góc HAB=90 độ
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC) a) Chứng minh tứ giác ADHE là hình chữ nhật. b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK. c) Chứng minh tứ giác DECK là hình thang cân. d) Gọi O là giao điểm của DE và AH; Gọi M là giao điểm của AI và CO. Chứng minh AM = 1/3 AK
Cho Tam giác ABC vuông tại A AB AC , đường cao AH. Vẽ HD vuông góc AB, HE vuông góc AC D thuộc AB, thuộc AC a Chứng minh ADHE là hình chữ nhật.b Gọi P là điểm đối xứng của A qua E. Chứng minh DHPE là hình bình hành.c Gọi M là trung điểm của HC, I là giao điểm cuả AH và DE. Chứng minh BI vuông góc AM .
cho tam giác abc vuông tại a, đường cao ah ( h thuộc bc). kẻ hd vuông góc với ab(d thuộc ab), kẻ he vuông góc với ac(e thuộc ac) gọi o là giao điểm của ah và de.
a)chứng minh tứ giác adhe là hình chữ nhật
b)qua o kẻ đường thẳng song song với ac cắt bc tại i. chứng minh io là tia phân giác của góc hie
c)gọi m là trung điểm của bh,md cắt io tại f. chứng minh tứ giác dief là hình bình hành
Câu 3 (3,0 điểm). Cho tam giác ABC vuông tại A (AB > AC), đường cao AH. Kẻ HD vuông góc với AB D AB , kẻ HE vuông góc với AC E AC . Gọi O là giao điểm của AH và DE. a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật và OA = OE b) Chứng minh rằng: ABC AED c) Gọi I là trung điểm của BC. Chứng minh rằng: AI vuông góc với DE
Cho tam giác ABC vuông tại A (AB>AC), đường cao AH. Kẻ HD vuông góc với AB, Kẻ HE vuông góc với AC. Gọi O là giao điểm của AH và DE.
a, Chứng minh rằng: Tứ giác ADHE là hình chữ nhật và OA=OE
b, Chứng minh Góc ABC= Góc AED
c, Gọi I là trung điểm của BC. Chứng minh rằng: AI vuông góc với DE
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D, E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB, AC
a) chứng minh tứ giác ADHE là hình chữ nhật
b) gọi K là trung điểm của HC. Chứng minh rằng DE ⊥ EK
Cho tam giác ABC vuông ở A, đường cao AH. Kẻ HD vuông góc với AB và HE vuông góc với AC (D trên AB, E trên AC). Gọi O là giao điểm của AH và DE. a) Chứng minh AH=DE. b) Gọi P và Q lần lượt là trung điểm của BH và HC. Chứng minh tứ giác DEQP là hình thang vuông
Cho tam giác ABC vuông tại A có AB=6 ; AC=8 . Kẻ đường trung tuyến AM , đường cao AH. Kẻ HD vuông góc AB , HE vuông góc AC.
a) Chứng minh ADHE là hình chữ nhật . Tính DE
b) Gọi I là trung điểm HB , K là trung điểm HC . Chứng minh ID vuông góc DE ( giúp em với )
tam giác ABC vuông tại A có, đường cao AH, đường trung tuyến AM. Từ H kẻ HD,HE lần lượt vuông góc với AB,AC. a) Chứng minh ADHE là hình chữ nhật. b) Chứng minh AM Vuông góc DE. c) Gọi O là giao điểm của AH và DE. Qua A kẻ tia Ax vuông góc với đường thẳng MO tại P cắt tia CB tại N. Chứng minh: 3 điểm N, D, E thẳng hàng HÉP MY