a, tứ giác ADHE có : góc DAE=AEH=ADH=90 độ nên là hcn
AD định lý pytago vào tgiac ABC tính đc BC=10cm
AD công thức tính diện tích tam giác ABC, ta có:
(AB.AC)/2=(AH.BC)/2
thay số, ta được AH=24/5 cm=4.8 cm
mà AH=DE(HCN)
nên DE=4.8cm
a, tứ giác ADHE có : góc DAE=AEH=ADH=90 độ nên là hcn
AD định lý pytago vào tgiac ABC tính đc BC=10cm
AD công thức tính diện tích tam giác ABC, ta có:
(AB.AC)/2=(AH.BC)/2
thay số, ta được AH=24/5 cm=4.8 cm
mà AH=DE(HCN)
nên DE=4.8cm
tam giác ABC vuông tại A có, đường cao AH, đường trung tuyến AM. Từ H kẻ HD,HE lần lượt vuông góc với AB,AC. a) Chứng minh ADHE là hình chữ nhật. b) Chứng minh AM Vuông góc DE. c) Gọi O là giao điểm của AH và DE. Qua A kẻ tia Ax vuông góc với đường thẳng MO tại P cắt tia CB tại N. Chứng minh: 3 điểm N, D, E thẳng hàng HÉP MY
Câu 1: Cho tam giác ABC vuông tại A, đường cao AH, D và E là 2 đường vuông góc kẻ từ H đến AB và AC.
A) Chứng minh AH=DE
B) I là trung điểm HB, K là trung điểm HC. Chứng minh DI song song với EK
Câu 2: Cho tam giác ABC vuông góc tại A, đường cao AH, trung tuyến AM.
A) Chứng minh góc HAB = góc MAC
B) Vẽ HD vuông góc với AB, HE vuông góc với AC. Chứng minh AM vuông góc với DE.
Cho tam giác ABC vuông tại A ,đường cao AH ,Gọi D,E theo thứ tự là chân các đường vuông góc kẻ từ H đến AB,AC a.Chứng minh tứ giác ADHE là hình chữ nhật b.Gọi I là trung điểm của HB ,Chứng minh DI vuông góc với DE c.Gọi K là trung điểm của HC .Chứng minh IDEK là hình thang vuông d.Giả sử DI = 1 cm ; EK = 4cm và AH = 6 cm .Tính diện tích tam giác ABC
Cho tam giác ABC vuông tại A, đường cao AH. Kẻ HE vuông góc với AB, HD vuông góc với AC.
a, Chứng minh tứ giác ADHE là hình chữ nhật.
b, Gọi M là trung điểm của BC, N là giao điểm của AM và HD. Chứng minh góc BHE = góc MAC.
c, Chứng minh tứ giác BEDN là hình bình hành.
Cho tam giác ABC vuông tại A (AB < AC) có đường cao AH. Kẻ HD vuông góc với AB (D thuộc AB), kẻ HE vuông góc với AC (E thuộc AC) a) Chứng minh tứ giác ADHE là hình chữ nhật. b) Gọi I là trung điểm của đoạn thẳng HC. Gọi K là điểm đối xứng với điểm A qua điểm I. Chứng minh rằng AC // HK. c) Chứng minh tứ giác DECK là hình thang cân. d) Gọi O là giao điểm của DE và AH; Gọi M là giao điểm của AI và CO. Chứng minh AM = 1/3 AK
Cho tam giác ABC vuông tại A (AB>AC), đường cao AH. Kẻ HD vuông góc với AB, Kẻ HE vuông góc với AC. Gọi O là giao điểm của AH và DE.
a, Chứng minh rằng: Tứ giác ADHE là hình chữ nhật và OA=OE
b, Chứng minh Góc ABC= Góc AED
c, Gọi I là trung điểm của BC. Chứng minh rằng: AI vuông góc với DE
Cho Tam giác ABC vuông tại A AB AC , đường cao AH. Vẽ HD vuông góc AB, HE vuông góc AC D thuộc AB, thuộc AC a Chứng minh ADHE là hình chữ nhật.b Gọi P là điểm đối xứng của A qua E. Chứng minh DHPE là hình bình hành.c Gọi M là trung điểm của HC, I là giao điểm cuả AH và DE. Chứng minh BI vuông góc AM .
cho tam gvác abc vuông tại a trung tuyến am, đường cao ah .kẻ hd vuông góc với ab tại d ,he vuông góc ac tại e .a,chứng minh ah=de b,kẻ mf vuông góc vớv ab tại f lấy điểm k sao cho f là trung điểm của mk chứng minh tứ giác ambk la hinhf thoi và am vuông góc với de c, chứng minh bd.ac+ce.ab=ab.ac
Câu 3 (3,0 điểm). Cho tam giác ABC vuông tại A (AB > AC), đường cao AH. Kẻ HD vuông góc với AB D AB , kẻ HE vuông góc với AC E AC . Gọi O là giao điểm của AH và DE. a) Chứng minh rằng: Tứ giác ADHE là hình chữ nhật và OA = OE b) Chứng minh rằng: ABC AED c) Gọi I là trung điểm của BC. Chứng minh rằng: AI vuông góc với DE