(AB/AC)^2=HB/HC
=>(AB/AC)^2=9/16
=>AB/AC=3/4
(AB/AC)^2=HB/HC
=>(AB/AC)^2=9/16
=>AB/AC=3/4
1. Cho tam giác ABC vuông tại A. Biết \(\dfrac{AB}{AC}=\dfrac{5}{12}\), BC= 3,9cm. Tính HB,HC
Cho tam giác ABC vuông tại A (AB > AC), kẻ AH vuông góc với BC (H thuộc BC), đường phân giác BE cắt AH tại F (E thuộc AC)
a) Chứng minh ΔHAC ∼ ΔABC
b) Cho biết AC = 3cm, BC = 5cm. Tính độ dài đoạn thẳng HB,AH
c) Chứng minh: \(\dfrac{FH}{FA}\)= \(\dfrac{EA}{EC}\)
Cho tam giác ABC vuông tại A Vẽ đường cao AH ,HB=9,HC=16 a) tìm các cặp tg đồng dạng b)chứng minh rằng AH^2=HB.HC c)tính AH,AB,AC
Cho tam giác ABC vuông tại A đường cao AH biết độ dài AH= 12; HB= 16 tìm độ dài các cạnh AB; AC; HC
Cho tam giác ABC vuông tại A , vẽ đường cao AH . Chứng minh
a)Tam giác ABC đồng dạng với tam giác ABH
b) Vẽ tia phân giác AI . Tính IB vầ IC biết BC =10cm và \(\dfrac{AB}{AC}\)=\(\dfrac{2}{3}\)
1.cho tam giác ABC vông tại A, đường cao AH. Biết AB=3cm, BC=5cm. Tính AC, AH, BH, CH 2. Cho tam giác ABC vông tại A, đường cao AH. Biết HB=3,6cm, HC=6,4cm. Tính BC,AB,AC,AH
Cho tam giác ABC vuông tại A có đường cao AH. a/ cm AH2= HB.HC. b/biết HB=3,6cm, HC=6,4cm. Tính BC, AH, AB, AC
Cho tam giác ABC vuông tại A(AC>AB). Vẽ đường cao AH(H∈BC). Trên tia đối tia BC lấy K sao cho KH=HA. Qua K kẻ đường thẳng song song với AH cắt đường thẳng AC tại P. Gọi Q là trung điểm BP. AQ cắt BC tại I. CMR: \(\dfrac{AH}{HB}-\dfrac{BC}{IB}=1\)
= \(\dfrac{EA}{EC}\)