a: \(BC=\dfrac{AB^2}{BH}=12,8\left(cm\right)\)
Xét ΔBCA vuông tại A có sin ACB=AB/BC=5/8
nên góc ACB=39 độ
b: Xét tứ giác AMHN có góc MAN+góc MHN=180 độ
nên AMHN lf tứ giác nội tiếp
a: \(BC=\dfrac{AB^2}{BH}=12,8\left(cm\right)\)
Xét ΔBCA vuông tại A có sin ACB=AB/BC=5/8
nên góc ACB=39 độ
b: Xét tứ giác AMHN có góc MAN+góc MHN=180 độ
nên AMHN lf tứ giác nội tiếp
Cho tam giác ABC vuông tại A AB bé hơn AC đường cao ah Gọi M là trung điểm của AC và E,F là chân đường vuông góc hạ Từ H xuống AB và AC qua H kẻ đường thẳng vuông Góc với HM cắt AB tại N
a,Chứng minh rằng bốn điểm A,N,H,M cùng thuộc đường tròn và N là trung điểm của AB
b,Chứng minh rằng AH MN EF cùng đi qua một điểm
c,Chứng minh rằng AB^3/BE=AC^3/CF
cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC). Một đường thẳng qua A cắt đường tròn đường kính AB tại M, cắt đường tròn đường kính AC tại N (A nằm giữa 2 điểm M,N). Gọi I là giao điểm của AB và HM, K là giao điểm của AC và HN
a) chứng minh H nằm trên 2 đường tròn đường kính AB và AC
b) chứng minh tứ giác AIHK nội tiếp
c) chứng minh IK // MN
Cho tam giác ABC vuông tại A ( AB< AC), đường cao AH ( H ∈ BC). Vẽ HM vuông góc với AB tại M, HN vuông góc với AC tại N.
a) Cho biết AB=6cm, AC= 8cm. Tính các độ dài BC, AH
b) Chứng minh AM.AB= AN.AC
c) Qua A kẻ đường thẳng vuông góc với MN cắt BC tại D. Chứng minh D là trung điểm của BC
Giúp t câu c với
Cho tam giác nhọn ABC đường cao AH, phân giác trong góc BAC cắt BC tại O, qua O dựng các đường thẳng OM vuông góc với AB, ON vuông góc với AC. 1, Chứng minh : 5 điểm A,M,H,O,N cùng nằm trên một đường tròn. 2, Chứng minh: HA là phân giác của MHN. 3, Đường thẳng qua O vuông góc với BC cắt MN tại K. Chứng minh : KN.AC=KM.AB 4, Gọi I là trung điểm của BC. Chứng minh: A,K,I thẳng hàng
Cho tam giác ABC vuông tại A, AB = 8cm, AC = 6cm, đường cao AH. a) Tính BC, BH, AH. b) Gọi M, N lần lượt là chân đường vuông góc kẻ từ H đến AB, AC. Chứng minh rằng : AM.AB = AN.AC
Cho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEHCho tam giác ABC vuông tại A có đường cao AH. Tia phân giác góc BAH cắt BH tại D. Gọi M là trung điểm AB. E là giao điểm MD và AH. Chứng minh DAH = CEH. AB>AC
cho tam giác ABC vuông tại A, đường cao AH, biết BH=2cm, CH=8cm.
a, Tính Ah
b, Tính AB,AC
c, Gọi D và E là hình chiếu của H trên AB và AC. chứng mnh tam giác ADH đồng dạng với tam giác CEH, từ đó suy ra EH=2HD.
d, Đường thẳng vuông góc với DE tại D và E cắt BC tại M và N. chứng tỏ M là trung điểm của BH. tính dieenh tich tứ giác DENM
Cho tam giác ABC vuông tại A . Đường tròn (O) đường kính AB cắt BC tại H . Tia phân giác của góc HAC cắt DC tại E và cắt đường tròn (O) tại B .
a) Chứng minh: AH\(\perp BC\)
b) Gọi M là trung điểm của AB . Chứng minh HM là tiếp tuyến của đường tròn tâm O
c) Chứng minh: DA. DE=DC\(^2\)
Cho tam giác ABC vuông tại A (AB<AC) có đường cao AH, đường trung tuyến AM (H, M thuộc BC)
1, Cho AB = 6, BC = 10. Tính BH và sin góc ACB
2, Gọi D là điểm đối xứng của A qua M. Chứng mình rằng CD2 = BH.BC
3, Đường thẳng AH cắt hai đường thẳng BD và CD lần lượt tại T và Q. Gọi P là giao điểm của 2 đường thẳng CT và BQ. Chứng mình rằng T là trực tâm của tam giác BCQ