Cho tam giác ABC có BC = a, AC = b, AB = c, đường phân giác trong ứng với góc A là la. Chứng minh: \(l_a=\dfrac{2bc.\cos\dfrac{A}{2}}{b+c}\)
1) Trong mặt phẳng tọa độ Oxy, cho A(1;2), B(3;-4). Tìm tọa độ điểm C sao cho tam giác ABC vuông tại C và có góc B bằng 60o.
2) Cho tam giác ABC có góc nhọn B, AD và CE là hai đường cao.
Biết rằng SABC = 9SBDE, DE=2\(\sqrt{2}\) . Tính cosB và bán kính đường tròn ngoại tiếp tam giác ABC.
Cho tam giác ABC vuông tại A, = 58° và a = 72 cm. Tính góc C, cạnh b,c, đường cao ha, hb và đường trung tuyến ma, mb, mc
Cho tam giác ABC có ba cạnh a,b,c. Chứng minh rằng:
\(\dfrac{a^2+b^2+c^2}{2abc}=\dfrac{cosA}{a}+\dfrac{cosB}{b}+\dfrac{cosC}{c}\)
Cho tam giác ABC có ba cạnh là a, b, c là \(a=x^2+x+1\), \(b=2x+1\), \(c=x^2-1\). Chứng minh rằng tam giác có một góc bằng 120 độ.
Bài 1: Cho tam giác ABC vuông tại A.CMR: \(m^2_b +m^2_c =5m^2_a\)
Bài 2: Cho tam giác ABC thỏa mãn \(\frac{a^3+b^3-c^3}{a+b-c}=c^2\). Tìm số đo của \(\widehat{C}\)
Bài 3: Nhận dạng tam giác ABC nếu \(\frac{a^3+c^3-b^3}{a+c-b}=b^2\) và \(sinA.sinC=\frac{3}{4}\)