a: góc AHC=góc AKC=90 độ
=>AHKC nội tiếp
b: Sửa đề; AB*HC=AC*HA
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>AB*HC=AC*HA
a: góc AHC=góc AKC=90 độ
=>AHKC nội tiếp
b: Sửa đề; AB*HC=AC*HA
Xét ΔHBA vuông tại H và ΔHAC vuông tại H có
góc HBA=góc HAC
=>ΔHBA đồng dạng với ΔHAC
=>AB*HC=AC*HA
Cho tam giác ABC vuông tại A và AB < AC. Gọi H là hình chiếu vuông góc của A trên BC và M là điểm đối xứng của H qua AB.
1) Chứng minh tứ giác AMBH nội tiếp.
2) Chứng minh CP.CM = CA².
3) Gọi E là giao điểm thứ hai của AB với đường tròn ngoại tiếp tam giác APC. Chứng minh rằng EN song song với BC.
Cho tam giác nhọn ABC có AB<AC và trực tâm là T. Gọi H là chân đường cao kẻ từ A của tam giác ABC và D là điểm đối xứng với T qua đường thẳng BC; I và K lần lượt là hình chiếu vuông góc của D trên AB và AC; E và F lần lượt là trung điểm của AC và IH
a) Chứng minh ABDC là tứ giác nội tiếp và tam giác ACD và IHD đồng dạng
b) Chứng minh I,H,K thẳng hàng và DÈ là tam giác vuông
c) Chứng minh \(\frac{BC}{DH}=\frac{AB}{DI}+\frac{AC}{DK}\)
Cho tam giác ABC có ( AB < AC). Các đường cao AD và BE của tam giác ABC cắt nhau tại H. Gọi I đối xứng với H qua D. Gọi M và N lần lượt là hình chiếu vuông góc của I trên AB và AC.
1) Chứng minh tứ giác ABDE nội tiếp và CAD= CBI
2) Chứng minh rằng góc MDI=ACI
cho tam giác ABC vuông tại a có BC=20cm, góc B = 60 độ a) Giai tam giác ABC b) Kẻ AK vuông góc BC tại K. Tính AK và chứng tỏ : KB= AB.sinC c) lấy điểm H đối xứng với B qua K; Gọi D và E lần lượt là hình chiếu của H trên AB và AC. Chứng minh rằng góc DKE= 90 độ
cho tam giác ABC vuông tại A, gọi D là trung điểm của cạnh BC.Lấy điểm M bất kì trên đoạn thẳng AD(M không trùng với A).Gọi N,P theo thứ tự là hình chiếu vuông góc của M xuống AB,AC và H la hình chiếu vuông góc của N xuống đường thẳng PD .
a) Chứng minh AH vuông góc với BH.
b) Đường thẳng qua B song song với AD cắt đường trung trực của AB tại I
chứng minh ba điểm H,N,I thẳng hàng
Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn O vẽ đường kính AD . Đường thẳng B vuông góc với AC tại E cắt AC tại F. Gọi H là hình chiếu vuông góc của B trên AC. M là trung điểm của BC
a) chứng minh tứ giác CDEF nội tiếp
b) chứng minh góc MHC + góc BAD = 90°
Bài 1: Cho tam giác ABC nhọn ( AB<AC) nội tiếp đường tròn (O). Gọi H là hình chiếu vuông góc của A trên BC. Gọi M và N lần lượt là hình chiếu vuông góc của B và C trên đường kính AD của đường tròn(O)
a) CM tứ giác ABHM,AHNC nội tiếp
b) CM tam giác HMN đồng dạng tam giác ABC
c) Chứng minh HM vuông góc với AC
d) Gọi I là tủng điểm của BC. CM I là tâm đường tròn ngoại tiếp tam giác HMN
Bài 2:Cho đường tròn (O) đường kính AB=2R, Cl à trung điểm của OA và dây MN vuông góc với OA tại C. K là điểm di động trên cung nhỏ MB và H là giao của AK và MN
a) CM tứ giác BCHK nội tiếp
b) Chứng minh tam giác MBN đều
c) Tìm vị trí điểm K trên cung nhỏ MB sao cho KM+KN+KB đạt giá trị lớn nhất và tính giá trị lớn nhất đó theo R
Cho tam giác abc có ba góc nhọn nội tiếp đường tròn tâm O Trên cạnh BC lấy điểm d d khác B phẩy C sao cho đường thẳng vuông góc với BC tại D cắt cung nhỏ AC tại đường tròn tâm O tại M Gọi E là hình chiếu của M trên AC
a Chứng minh tứ giác CDME nội tiếp đường tròn
b/chứng minh MA x MB = MB x ME
C/Gọi i k lần lượt là trung điểm của AB và de chứng minh EK vuông góc với MK