Cho tam giác nhọn ABC có AB<AC và trực tâm là T. Gọi H là chân đường cao kẻ từ A của tam giác ABC và D là điểm đối xứng với T qua đường thẳng BC; I và K lần lượt là hình chiếu vuông góc của D trên AB và AC; E và F lần lượt là trung điểm của AC và IH
a) Chứng minh ABDC là tứ giác nội tiếp và tam giác ACD và IHD đồng dạng
b) Chứng minh I,H,K thẳng hàng và DÈ là tam giác vuông
c) Chứng minh \(\frac{BC}{DH}=\frac{AB}{DI}+\frac{AC}{DK}\)
cho tam giác ABC vuông tại A có đường cao AH ( H∈BC)
a) Cho biết AB=6cm,BC=10cm. Tính AC,AH,BH
bb) Gọi E,F lần lượt là hình chiếu của điểm H lên các cạnh AB,AC. Chứng minh AE.AB=AF.AC và △AFE∼△ABC
c) Kẻ phân giác BD của góc ABC ( D∈ AC). Chứng minh : cotDBC=(AB+BC)/AC
cho tam giác abc vuông tại a(ab<ac), đường cao ah. gọi k là trung điểm ah. vẽ đường tròn tâm K, đường kính AH cắt ab và ac lần lượt tại d,e. a, chứng minh adhe là hình chữ nhật và ad.ab=ae.ac ; b, gọi O là trung điểm BC. Chứng minh AO vuông góc với DE. c, giả sử AB = 15cm, AC = 20cm. Trung trực của BC cắt nhau tại I. Tính bán kính đường tròn ngoại tiếp tứ giác BDEC
Cho tam giác ABC vuông tại A, đường cao AH. Gọi M và N lần lượt là các điểm đối xứng của H qua AB và AC. AB giao với MH tại E, AC giao với HN tại F.
a) Tứ giác AEHF là hình gì ?
b)Tính EF. Giả sử AB=3cm,AC=4cm
c)Chứng minh rằng:A là trung điểm của MN
d)Chứng minh MN là tiếp tuyến của đường tròn ngoại tiếp của tam giác ABC
Cho tam giác ABC vuông góc tại A, đường cao AH. Gọi D và E thứ tự là hình chiếu của H trên AB và AC. a)Tính AH biết HB = 4cm, HC =9cm. b)Chứng minh rằng: AD.AB = AE.AC c)Gọi I, K lần lượt là trung điểm của BH và CH, Chứng minh rằng tứ giác DEKI là hình thang vuông, tính diện tích của tứ giác DEKI.
cho tam giác abc vuông tại a (AC>AB) gọi h là hình chiếu vuông góc của A trên cạnh BC , D là điểm đối xứng của B qua H và K là hình chiếu vuông góc của C trên đường thẳng AD
a) chứng minh AHKC là tứ giác nội tiếp
b) chứng minh HK.AC= AB.HC
Cho tam giác ABC vuông tại A , đường cao AH . Gọi D và E lần lượt là hình chiếu của điểm H trên các cạnh AB và AC
a, Chứng minh AD . AB = AE . AC
b, Gọi M , N lần lượt là trung điểm của BH và CH . Chứng minh DE là tiếp tuyến chung của 2 đường tròn ( M , MD ) và ( N , NE )
c,Gọi P là trung điểm MN , Q là giao điểm của DE và AH , giả sử AB=6cm , AC=8cm . Tính độ dài PQ
cho tam giác vuông ABC vuông tại A. có AB>AC .AH là đường cao.Gọi D và E lần lượt là trung điểm của HB,HA .CE cắt AD tại F .Gọi I là điểm đối xứng của A qua F .Chứng minh góc CIH bằng góc CBI
Cho tam giác ABC vuông tại A, đường cao AH. Gọi D và E lần lượt là hình chiếu của H lên AB, AC.
Chứng minh : AD. AB=AE. ACGọi M,N lần lượt là trung điểm của BH và CH. chứng minh DE vuông góc NE và MD.Gọi P là trung điểm MN, Q là giao điểm DE và AH. Giả sử AB=6cm, AC=8cm. Tính PQ