Cho tam giác đều ABC, tâm O. M là một điểm bất kì trong tam giác. Hình chiếu vuông góc của M xuống 3 cạnh của tam giác là D, E, F. Từ M kẻ ba đường thẳng song song với 3 cạnh của tam giác. Các giao điểm với các cạnh lần lượt là: I, J, K, L, P, Q (D là trung điểm IQ; E là trung điểm KP; E là trung điểm KP; F là trung điểm LJ). Vì sao ta có:
\(\overrightarrow{MD}=\frac{\overrightarrow{MI}+\overrightarrow{MQ}}{2}\); \(\overrightarrow{ME}=\frac{\overrightarrow{MK}+\overrightarrow{MP}}{2}\);\(\overrightarrow{MF}=\frac{\overrightarrow{MJ}+\overrightarrow{ML}}{2}\)?
cho tam giác ABC có AM là trung tuyến gọi I là trung điểm AM và K là một điểm trên cạnh AC sao cho AK = 1/3 AC chứng minh ba điểm B I K thẳng hàng
Cho tứ giác ABCDE. Gọi M, N, P, Q lần lượt là trọng tâm các tam giác BCD, CDA, DAB, ABC.
Gọi G là trung điểm của đoạn thẳng nối trung điểm hai cạnh đối diện của tứ giác ABCD.
a) Chứng minh các đường thẳng AM, BN, CP và DQ đồng quy tại G.
b) Chứng minh: GA + GB + GC + GD = 0
Cho tam giác ABC, M thuộc cạnh AB, N thuộc cạnh AC sao cho AM=\(\frac{1}{4}\)AB, AN=\(\frac{2}{3}\)AC và điểm P thỏa mãn \(\overrightarrow{CP}\)=\(\frac{1}{5}\overrightarrow{BC}\). Chứng minh 3 điểm M,N,P thẳng hàng
cho tam giác ABC vuông cân tại A, AB=a; M là trung điểm của AB; điểm N thuộc AC, sao cho vecto CN =2vecto NA; K là trung điểm MN; D là trung điểm BC.
a) CM: AM+KN=AN+KM (vecto)
b) PT vecto KD theo 2 vecto AB,AC
c) Tính vecto KD=?
CHo tam giác ABC có điểm M thuộc cạnh BC. CHứng minh rằng \(\overrightarrow{AM}=\frac{MC}{BC}\overrightarrow{AB}+\frac{MB}{BC}\overrightarrow{AC}\)
Cho tan giác ABC đều cạnh a, I là điểm trên cạnh BC sao cho BC = 3BI và J là trung điểm của AB.
a) Tính |vecto AB + vecto AC|
b) Chứng minh vecto AI = 2/3vecto AB + 1/2vecto AC.
c) Gọi M là điểm thoả : 3vecto MA + vecto MB - 2vecto MC = vecto 0.
d) Gọi N là điểm thoả : |vecto NA + vecto NB| = |vecto NB + vecto NC. Chứng minh điểm N thuộc một đường thẳng cố định.
giúp mình với ạ :((
Cho tam giác ABC điểm E thuộc cạnh AB sao cho \(AE=\dfrac{1}{2}BE\), điểm F thuộc cạnh AC sao cho AF=2FC . G là trọng tâm tam giác ABC
a) Tính \(\overrightarrow{AG}\) theo \(\overrightarrow{AE,}\overrightarrow{AF}\) . AG cắt EF tại I. Xác định tỉ số \(\dfrac{AI}{AG}\)
b) Gọi P là trung điểm của EF. Tính \(\overrightarrow{AP}\) theo \(\overrightarrow{AB},\overrightarrow{AC}\) . AP cắt BC tại K. Xác định K và tính \(\dfrac{AP}{AK}\)
cho tam giác ABC có M là trung điểm của BC , N là điểm thuộc cạnh AC sao cho AN=2NC.Gọi I là giao điểm của AM và BN .Tính \(\frac{AI}{AM}\)