Cho tam giác ABC, G là trọng tâm. H đối xứng vs G qua B. Hãy biểu diễn vecto AB, AC theo 2 vecto AG, AH
Cho tam giác ABC vuông tại A, AC =2a, AB=3a, G là trọng tâm tam giác ABC. Tính |vecto AB + vecto AC|, |vecto AB - vecto AC| , |vecto GB + vecto GC|
Cho tam giác ABC. Gọi M,N, P lần lượt là trung điểm của AB, BC, CD. Trong các mệnh đề sau, hãy chọn mệnh đề sai:
A. Vecto AM + Vecto AP= Vecto AN
B.Vecto MB+ Vecto NB= Vecto PB
C.Vecto BA+ Vecto BC = Vecto BP
D.Vecto CP+ Vecto NB= Vecto CM
Gọi G là trọng tâm tam giác ABC. Đặt \(\overrightarrow{a}=\overrightarrow{GA},\overrightarrow{b}=\overrightarrow{GB.}\)Hãy biểu thị mỗi vecto \(\overrightarrow{AB},\overrightarrow{GC},\overrightarrow{BC},\overrightarrow{CA}\) qua các vecto \(\overrightarrow{a},\overrightarrow{b}\)
Cho tam giác ABC có H là trực tâm, G là trọng tâm, O là tâm đường tròn ngoại tiếp. Gọi I là trung điểm của BC. Hãy chứng minh
a) vecto AH=2vecto OI
b)vecto OH=vectoOA+ vecto OB + vecto OC
c) 3 điểm H,G,O thẳng hàng
Cho hình bình hành ABCD.
a) Cho vecto AB = a, vector AD = b, I là trung điểm CD, G là trọng tâm tam giác BCD
CMR : vecto BI = b - 1/2 a, tính AG theo a,b
b) Nếu G' là trọng tâm tam giác BCI. CMR: vecto AG'=5/6a+2/3b
*Giúp mình phần b với ạ
Cho tam giác ABC, D là điểm thỏa vecto AD = 3 vecto BD; N là điểm thỏa vecto AN =1/3 vecto AC;K là điểm trên BC sao cho: vecto BK = 1/6 vecto BC. Phân tích vecto DN theo vecto AB, vecto AC; vecto DK theo vecto AB, vecto AC.
Cho ∆ABC. Gọi D là điểm xác định bởi vecto BD=2/3 vecto BC và I là trung điểm của AD. Hãy phân tích vecto BI, vecto BM theo vecto BA và vecto BC