Theo tính chất góc ngoài của tam giác, ta có: \(\widehat{MND}=\widehat{MED}+\widehat{D}\)
\(\widehat{MND}=\widehat{MCD}+\widehat{M}\)
\(\Rightarrow\widehat{MED}+\widehat{D}=\widehat{MCD}+\widehat{M}\) (1)
Tương tự: \(\widehat{BSC}=\widehat{BEM}+\widehat{M}=\widehat{BCM}+\widehat{B}\) (2)
Cộng vế (1) và (2):
\(2\widehat{M}+\widehat{MCD}+\widehat{BEM}=\widehat{B}+\widehat{D}+\widehat{MED}+\widehat{BCM}\)
Mà \(\left\{{}\begin{matrix}\widehat{MCD}=\widehat{BCM}\\\widehat{BEM}=\widehat{MED}\end{matrix}\right.\) theo giả thiết
\(\Rightarrow2\widehat{M}=\widehat{B}+\widehat{D}\Rightarrow\widehat{M}=\dfrac{\widehat{B}+\widehat{D}}{2}\)