Cho tam giác ABC vuông tại A, gọi M là trung điểm của BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho IN = IM. Gọi K là giao điểm AB và CN. Trên tia đối của tia MA lấy điểm E sao cho ME = MA. Chứng minh:
a) Tam giác IMC = tam giác INC. b) CB = CK và N là trung điểm CK.
c) AB // EC. d) Ba điểm E, I, K thẳng hàng.
a: Xét ΔIMC vuông tại I và ΔINC vuông tại I có
CI chung
IM=IN
Do đó: ΔIMC=ΔINC