giúp tớ với các cậu ơi huhuhu < mình tick cho
Bài 5 (3,5 điểm)
Cho tam giác ABC vuông tại A< gọi M là trung điểm của BC. Kẻ MI vuông góc với AC tại I. Trên tia đối của tia IM lấy điểm N sao cho IN = IM. Gọi k là giao điểm AB và CN. Trên tia đối của MA lấy điểm E sao cho ME = MA. chứng minh:
a) ΔIMC = Δ INC
b) CB = CK và N là điểm trung CK
c) AB // CE
d) Ba điểm E, I, K thẳng hàng
a/ Xét △IMC và △INC có:
\(IM=IN\left(gt\right)\)
\(\hat{MIC}=\hat{NIC}=90^o\)
CI là cạnh chung
\(\Rightarrow\Delta IMC=\Delta INC\left(c.g.c\right)\)
b/ Từ câu a suy ra \(\hat{MCI}=\hat{NCI}\) hay \(\hat{BCA}=\hat{KCA}\) ⇒ CA là đường phân giác của △CBK.
+) \(CA\perp AB\) (do △ABC vuông tại A) ⇒ CA là đường cao của △CBK
⇒ △CBK cân tại C
\(\Rightarrow CB=CK\)
Mặt khác: \(MB=\dfrac{1}{2}CB=MC\) (do M là trung điểm của BC).
\(\Rightarrow CN=\dfrac{1}{2}CK=NK\) (do CN=MC, CB=CK (cmt))
⇒ N là trung điểm của CK.
c/ Xét △CME và △BMA có:
\(CM=MB\left(gt\right)\)
\(\hat{AMB}=\hat{CME}\) (đối đỉnh)
\(AM=ME\left(gt\right)\)
\(\Rightarrow\Delta CME=\Delta BMA\left(c.g.c\right)\)
\(\Rightarrow\hat{ABM}=\hat{MCE}\) (hai góc tương ứng)
⇒ AB // CE
d/ Mình chưa nghĩ ra, khi nào nghĩ ra mình sẽ bổ sung.