Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Nguyễn Quang Huy
cho tam giác ABC nội tiếp đường tròn tâm O. Các tia phân giác góc A và B cắt hau ở I và cắt đường tròn theo thứ tự ở D và E. Chứng minha) tam BDI là tam giác cânb)DE là trung trực của ICc) IF và BC song song, trong đó F là giao điểm DE và AC

a: Xét (O) có

\(\hat{BAD}\) là góc nội tiếp chắn cung BD

\(\hat{CAD}\) là góc nội tiếp chắn cung CD

\(\hat{BAD}=\hat{CAD}\)

Do đó: sđ cung BD=sđ cung CD

Xét (O) có

\(\hat{ABE}\) là góc nội tiếp chắn cung AE

\(\hat{CBE}\) là góc nội tiếp chắn cung CE

\(\hat{ABE}=\hat{CBE}\)

Do đó: sđ cung AE=sđ cung CE

Xét (O) có

\(\hat{BID}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung BD và AE

=>\(\hat{BID}\) =1/2(sđ cung BD+sđ cung AE)

=1/2(sđ cung CD+sđ cung EC)

=1/2*sđ cung DE

Xét (O) có

\(\hat{DBE}\) là góc nội tiếp chắn cung DE

=>\(\hat{DBE}\) =1/2*sđ cung DE

=>\(\hat{DIB}=\hat{DBI}\)

=>ΔDBI cân tại D

b: Gọi K là giao điểm thứ hai của CI và (O)

Xét ΔABC có

AD,BE là các đường phân giác

AD cắt BE tại I

Do đó: I là tâm đường tròn nội tiếp ΔABC

=>CI là phân giác của góc ACB

Xét (O) có

\(\hat{ACK}\) là góc nội tiếp chắn cung AK

\(\hat{BCK}\) là góc nội tiếp chắn cung BK

\(\hat{ACK}=\hat{BCK}\)

Do đó: sđ cung AK=sđ cung BK

Xét (O) có

\(\hat{CIE}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung CE và BK

=>\(\hat{CIE}\) =1/2(sđ cung CE+sđ cung BK)

=1/2(sđ cung AE+sđ cung AK)

=1/2*sđ cung KE

Xét (O) có \(\hat{ECK}\) là góc nội tiếp chắn cung EK

=>\(\hat{ECK}=\frac12\) *sđ cung EK

=>\(\hat{ECI}=\hat{EIC}\)

=>EC=EI

=>E nằm trên đường trung trực của CI(1)

Xét (O) có

\(\hat{DIC}\) là góc có đỉnh ở bên trong đường tròn chắn hai cung DC và AK

=>\(\hat{DIC}\) =1/2(sđ cung DC+sđ cung AK)

=1/2(sđ cung BD+sđ cung BK)

=1/2*sđ cung DK

Xét (O) có

\(\hat{KCD}\) là góc nội tiếp chắn cung KD

=>\(\hat{KCD}\) =1/2*sđ cung KD

=>\(\hat{DIC}=\hat{DCI}\)

=>DC=DI

=>D nằm trên đường trung trực của CI(2)

Từ (1),(2) suy ra ED là đường trung trực của IC


Các câu hỏi tương tự
Nguyễn Quang Huy
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Phương
Xem chi tiết
linhh khánhh
Xem chi tiết
Khôi Đào
Xem chi tiết
Ngọc :))
Xem chi tiết
Trà My
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Bùi Anh Khoa
Xem chi tiết