B A M ^ = C A M ^ => B M ⏜ = M C ⏜ => OM ⊥ BC => BC//DE
B A M ^ = C A M ^ => B M ⏜ = M C ⏜ => OM ⊥ BC => BC//DE
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh: a/ BC song song với DE b/ Tam giác AMB đồng dạng tam giác MCE c/ Tam giác AMC đồng dạng tam giác MDB d/ Nếu AC=CE thì MA^2 = MD.ME
cho tam giac ABC nội tiếp đường tròn tâm O phân giác BAC cắt đường tròn O ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt ở D và E.CM a) BC song song với DE b)tam giác AMB đồng dạng với tam giác MCE, tam giác AMC đồng dạng với tam giác MDB c) Nếu AC=CE thì MA^2=MD.ME
Cho tam giác ABC nội tiếp đường tròn (O), tia phân giác của góc A cắt đường tròn ở M. Tiếp tuyến kẻ từ M với đường tròn cắt các tia AB và AC lần lượt tại D và E. Chứng minh:
a/ BC song song với DE
b/ Tam giác AMB đồng dạng tam giác MCE
c/ Tam giác AMC đồng dạng tam giác MDB
d/ Nếu AC=CE thì MA^2 = MD.ME
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
a) B D 2 = A D . C D
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
Tam giác ABC cân tại A có cạnh đáy nhỏ hơn cạnh bên, nội tiếp đường tròn (O).Tiếp tuyến tại B và C của đường tròn lần lượt cắt tia AC và tia AB ở D và E. Chứng minh:
a) B D 2 = A D . C D
b) Tứ giác BCDE là tứ giác nội tiếp
c) BC song song với DE
cho tam giác nhọn ABC (AB<AC) đường tròn tâm O đường kính BC cắt AB,AC lần lượt ở E và D . CE cắt BD ở H và AH cắt BC ở K .
a) BEHK nội tiếp và KA là tia phân giác của góc EKD .
b) gọi AJ,AI là các tiếp tuyến của đường tròn (O) ; ( I,J là các tiếp điểm và hai điểm D,J nằm cùng một nửa mặt phẳng bờ là đường thẳng AK) chứng minh rằng góc IKE= góc DKJ .
c) ba điểm I,H,J thẳng hàng
d) đường thẳng qua K và song song ED cắt AB và CH lần lượt ở Q và S chứng minh rằng KQ=KS
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
cho tam giác ABC nhọn nội tiếp đường tròn (O). Từ B và C kẻ hai tiếp tuyến với đường tròn (O), chúng cắt nhau tại D. Từ D kẻ cát tuyến song song với AB cắt đường tròn (O) tại E, F (E nằm giữa D và F) và cắt AC tại I. Chứng minh rằng:
a) tam giác BAC = tâm giác DOC
b) Tứ giác BDCI nội tiếp
c) OI vuông góc EF
d) Cho B, C cố định. Khi A chuyển động trên cung BC lớn thì I di chuyển trên đường nào?
Cho tam giác ABC nội tiếp đường tròn tâm O. Các tia phân giác của các góc A và B cắt nhau ở I và cắt đường tròn theo thứ tự ở D và E. Chứng minh:
a, Tam giác BDI là tam giác cân
b, DE là đường trung trực của IC
c, IF và BC song song, trong đó F là giao điểm của DE và AC