cho tam giác ABC, 3 đường cao AD,BE,CF cắt nhau tại H. I,K,L là trung điểm AB,BC,AC. M,N,P là trung điểm HA,HB,HC. cm 9 điểm D,E,F,L,I,K,M,N,P cùng thuộc một đường tròn
cho tam giác ABC, 3 đường cao AD,BE,CF cắt nhau tại H. I,K,L là trung điểm AB,BC,AC. M,N,P là trung điểm HA,HB,HC. cm 9 điểm D,E,F,L,I,K,M,N,P cùng thuộc một đường tròn
Cho tam giác ABC nhọn, các đương cao AD,BE,CF cắt nhau tại H.Gọi M,N,P lần lượt là trung điểm BC.AC.AB.Gọi I,J,K lần lượt là trung điiểm của HA,HB,HC. Chứng minh:
a, 9 điểm D,E,F,M,N,P,J,I,K cùng nằm trên một đường tròn.
b,Các đường tròn ngoại tiếp tam giác AHB,AHC,BHC bằng nhau.
Cho tam giác ABC có đường cao AD và trực tâm H. Gọi I, K lần lượt là trung điểm của HA, HB. Gọi E, F lần lượt là trung điểm của BC, AC. Chứng minh:
a, Bốn điểm E, F, I, K cùng thuộc một đường tròn
b, Điếm D cũng thuộc đường tròn đi qua bôn điểm E, F, I, K
Cho Tam giác ABC đường cao AD.BE,CF cắt nhau tại H. GỌi I,J,K,L lần lượt là trung điểm cảu AB,AC,HC,HB.Chứng minhI,J,K,L,E,F cùng thuộc 1 đường tròn
Cho tam giác nhọn ABC (AB < AC) nội tiếp đường tròn (O), các đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại K. Gọi I là trung điểm AH
1) Gọi M là trung điểm BC, kẻ đường kính AP. Chứng minh M là trung điểm của HP.
2) Chứng minh BH/BA + CH/CA = EF/KA.
3) Gọi S là giao điểm của hai đường thắng OI và MK. Chứng minh AS song song với BC.
Cho đường tròn (O) ngoại tiếp tam giác nhọn ABC. Gọi M và N lần lượt là điểm chính giữa của cung nhỏ AB và cung nhỏ BC. Hai dây AN và CM cắt nhau tại điểm I. Dây MN cắt các cạnh AB và BC lần lượt tại các điểm H và K.
4) Gọi P, Q lần lượt là tâm của các đường tròn ngoại tiếp tam giác MBK, tam giác MCK và E là trung điểm của đoạn PQ. Vẽ đường kính ND của đường tròn (O) . Chứng minh ba điểm D, E, K thẳng hàng.
Cho tam giác ABC nhọn . Các đường cao AD , BE , CF gặp nhau tại H . Gọi M, N , P là trung điểm của BC , CA , AB ; I , K ,F là trung điểm của HB , HC , HA
a. Chứng minh rằng : IKNP là hình chữ nhật
b. Chứng mình rằng : NI , KP , NI , QM đồng quy
c. Chứng minh : 9 điểm : chân 3 đường cao , trung điểm của 3 cạnh , trung điểm của 3 đoạn thẳng từ trực tâm đến các đỉnh cùng nằm trên 1 đường tròn , đường tròn Ơle
giups minh cau 1d, 2c , cam on nhieu
1. Cho tam giác ABC có ba góc nhọn. Đường tròn tâm (O) đường kính BC cắt hai cạnh Ab , AC lần lượt tại E và F. Gọi H là giao điểm của CE và BF, D là giao điểm của AD và BC.
a) Chứng minh AEHF nội tiếp
b) Chứng minh EC là tia phân giác của góc DEF
c) Đường thẳng EF cắt BC tại M, Chứng minh MB.MC=ME.MF=MO.MD
d) AD cắt đường tròn (O) tại I, chứng minh MI là tiếp tuyến của (O)
e) Đường thẳng qua D song song với MF, cắt AB và AC lần lượt tại K và L. Chứng minh : M, K, L, O cùng thuộc một đường tròn.
2. Từ một điểm A nằm ngoài đường tròn (O) kẻ hai tiếp tuyến AB và AC đến (O) (B và C là các tiếp điểm) và một cát tuyến ADE không đi qua tâm O (D nằm giữa A và E), gọi I là trung điểm của DE.
a) Chứng minh 5 điểm A;B;O;I;C cùng nằm trên một đường tròn suy ra IA là phân giác của góc BIC
b) BC cắt AE tại K. Chứng minh KA.KI=KD.KE
c) Qua C kẻ đường thẳng song với AB, đường này cắt các đướng thẳng BE, BD lần lượt tại P và Q. Chứng minh C là trung điểm của PQ.
d) Đường thẳng OI cắt đường tròn (O) tại S và H. Đường thẳng HK cắt (O) tại điểm thứ hai là T. Chứng minh 3 điểm A, T, S thẳng hàng
Cho tam giác ABC nhọn (AB < AC). Đường tròn (O) đường kính BC cắt AB và AC lần lượt tại E và D. Gọi H là giao điểm của BD và CE . Tia AH cắt BC tại F.
a) Chứng minh: HB . HD = HC . HE và AF vuông góc với BC.
b) Gọi M là trung điểm của CH. Chứng minh tứ giác OMEF là tứ giác nội tiếp.
c) Đoạn thẳng DF cắt CE tại N . Qua N vẽ đường thẳng vuông góc với CE cắt BC và BD lần lượt tại I và K . Chứng minh N là trung điểm của IK