Cho tam giác nhọn ABC có các đường cao AD,BE,CF cắt nhau tại H,gọi O là trung điểm của BC,I là trung điểm của AH,K là giao điểm của EF,OI.Chứng minh tam giác IEO và tam giác IFO vuông
Cho tam giác ABC có góc B , góc C cố định , góc A di chuyển sao cho tam giác ABC nhọn. Các đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của AH và EF
a) CM: \(\Delta\)ABE đồng dạng với \(\Delta\)AFC, \(\Delta\)AEF đồng dạng với \(\Delta\)ABC
b) CM: AD . HK = AK . HD
c) Tìm giá trị lớn nhất của AD . HD
Cho tam giác nhọn ABC có các đường cao AD, BE, CF cắt nhau tại H. Gọi K là giao điểm của AH và EF, N là trung điểm của AH. Đường thẳng qua A song song với BN cắt BC tại M. Gọi P là giao điểm của MK với AB. Chứng minh rằng :
a) MK // BE
b) PD, MH, KB đồng quy.
Cho \(\Delta ABC\) nhọn có 3 đường cao AD;BE; CF cắt nhau tại H a/ CM: CH x CF = CD x CB b/CM \(\Delta BCD\sim\Delta FCD\) c/ Gọi K là giao điểm của EF và AH: CM FH là đường phân giác của\(\Delta FDK\) và ADxHK= AK x DH
Cho tam giác nhọn ABC có đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Chứng minh AD*HD=DB*CD
Tam giác AEF đồng dạng tam giác ABC
AI*HD=IH*AD
Cho tam giác nhọn abc có các đường cao AD,BE,CF cắt nhau tại H.Gọi K là giao điểm của AH với EF, N là trung điểm của AH . Đường thẳng qua A song song với BN cắt BC tại M.Gọi P là giao điểm MK và AB
a)CM: tam giác AEF đồng dạng tam giác ABC
b)CM: EB là phân giác góc DEF
c)CM: HK/HD = NH/ND
d)CM: PD,MH,KB đồng quy
Cho tam giác ABC có các đường cao AD,BE,CF cắt nhau tại H. Gọi I,O lần lượt là trung điểm của AH,BC.
K là giao của EF và OI. Chứng minh: OI là trung trực của EF
Cho tam giác ABC có 3 đường cao AD,BE,CF cắt nhau tại H
a, CM AE.AC=AF.AB
b, CM AEF đồng dạng ABC
c, BFD đồng dạng BCA
d, CFD đồng dạng CBH
e, gọi I là giao điểm EF và BC CM IF . IE = IB.IC
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK