cho tam giác ABC nhọn các đường cao AD , BE , CF cắt nhau tại H . Gọi I là giao điểm EF và AD chứng minh rằng :
1, AD.HD=DB.CD
2, tam giác AEF đồng dạng với tam giác ABC
3, AI.HD=IH.AD
Cho tam giác nhọn ABC có đường cao AD, BE, CF cắt nhau tại H. Gọi I là giao điểm của EF và AH. Chứng minh AD*HD=DB*CD
Tam giác AEF đồng dạng tam giác ABC
AI*HD=IH*AD
Cho tam giác ABC nhọn ( AB < AC ) có ba đường cao AD , BE , CF cắt nhau tại H.
a ) Chứng minh : tam giac AEB đồng dạng tam giac AFC
b ) Chứng minh : AF.AB = AE.AC và tam giac AEF đồng dạng với tam giac ABC
c ) Gọi K là giao điểm của AH và EF . Chứng minh : KH.AD = AK.HD
Cho tam giác nhọn ABC . Các đường cao AD,BE,CF cắt nhau tại H. Chứng minh rằng:
a) Tam giác AEF đồng dạng với tam giác ABC
b) BH.BE + CH.CF = BC2
c) AD.HD < BC2/4
d) Gọi I,K,Q,R lần lượt là chân các đường vuông góc hạ từ E xuống AB,AD ,CF,BC . Chứng minh bốn điểm I,K,Q,R cùng nằm trên một đường thẳng.
Cho tam giác ABC nhọn các đường cao AD,BE,CF cắt nhau tại H,EF cắt nhau tại I,ED cắt nhau tại K chứng minh rằng:
a, AE x AC= AF x AB
b,tam giác AEF đồng dạng với tam giác ABC
c, tam giác AEF đồng dạng với tam giác DEC
d, IF x IE=IB x IC
e,góc EFC=góc EAH
f, EH là phân giác của góc DEF
g,tam giác CHA đồng dạng với tam giác CEF
h, BF x BA + CE x CA =BC2
I, HF x CK = HK x CF
K, cách đều các cạnh của tam giác DEF
l, gọi O là trung điểm của BC . cm: góc DEF= góc EOF
m, trên các đường cao BE và CF lần lượt lấy M và N sao cho góc ANB = góc AMC = 90 độ .cm:AN = AM
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
Giúp mình bài này với ạ !
Cho tam giác nhọn ABC ( AB < AC ) . Ba đường cao AD, BE, CF cắt nhau tại H, AH cắt EF tại I.
a) Chứng minh tam giác ABE và tam giác ACF đồng dạng , tam giác AEF và tam giác ABC đồng dạng.
b) Vẽ FK vuông góc với BC tại K. Chứng minh AC. AE = AH. AD và CH. DK = CD . HF
c) Chứng minh \(\dfrac{EI}{ED}=\dfrac{HI}{HD}\)
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.Chứng minh góc BME = góc BNE = 180 độ.
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK
cho tam giác nhọn ABC (AB<AC); các đường cao AD,BE,CF cắt nhau tại H
a, chứng minh rằng: tam giác CEB đồng dạng tam giác CDA
b, chứng minh rằng: CE.CA = CH.CF
c, chứng minh rằng: ∠ CED = ∠CBA
d, gọi i là giao điểm của DE v à CH; K là điểm đối xứng với H qua F
chứng minh rằng: Ci.CK=CH.CF
Chi tiết
Bỏ theo dõi
Báo vi p