Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, AC, AB tại N, M, E
a) ∆HBC có:
HN ⊥ BC nên HN là đường cao
BE ⊥ HC nên BE là đường cao
CM ⊥ BH nên CM là đường cao
Vậy A là trực tâm của ∆HBC
b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B
Các đường thẳng HA, HB, HC lần lượt cắt cạnh đối BC, AC, AB tại N, M, E
a) ∆HBC có:
HN ⊥ BC nên HN là đường cao
BE ⊥ HC nên BE là đường cao
CM ⊥ BH nên CM là đường cao
Vậy A là trực tâm của ∆HBC
b) Tương tự trực tâm của ∆AHB là C, ∆AHC là B
Cho tam giác ABC không vuông. Gọi H là trực tâm của nó.
a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó.
b) Tương tự hãy chỉ ra trực tâm của các tam giác HAB và HAC.
Cho tam giác ABC không vuông. Gọi H là trực tâm của nó.
a) Hãy chỉ ra các đường cao của tam giác HBC. Từ đó hãy chỉ ra trực tâm của tam giác đó.
b) Tương tự hãy chỉ ra trực tâm của các tam giác HAB và HAC.
Hãy giải thích tại sao trực tâm của tam giác vuông trùng với đỉnh góc vuông và trực tâm của tam giác tù nằm ngoài tam giác.
Trong không gian với hệ tọa độ Oxyz, cho tam giác ABC nhọn có H(2;2;1), K - 8 3 ; 4 3 ; 8 3 , O lần lượt là hình chiếu vuông góc của A, B, C trên các cạnh BC, AC, AB. Gọi I là trực tâm tam giác ABC . Phương trình mặt cầu (S) tâm A, đi qua điểm I là
A. S : x + 4 2 + y + 1 2 + z - 1 2 = 20
B. S : x - 2 2 + y 2 + z - 1 2 = 5
C. S : x 2 + y - 1 2 + z - 1 2 = 20
D. S : x + 2 2 + y 2 + z - 1 2 = 5
Gọi H là trực tâm của tam giác ABC. Phương trình các cạnh và đường cao của tam giác là AB: 7x-y+4=0; BH=2x+y-4=0; AH: x-y-2=0. Phương trình đường cao CH của tam giác ABC là
A. 7x-y=0
B. x-7y-2=0
C. x+7y-2=0
D. 7x+y-2=0
Cho tam giác ABC ( góc A=90 độ ) . Vẽ AH vuông góc với BC tại H . Tia phân giác của góc HAB cắt BC ở D, tia phân giác của HAC cắt BC tại E.
Chứng minh rằng các đường phân giác cũa tam giác ABC là giao điểm các đừơng trung trực của tam giác ADE
Trong không gian với hệ tọa độ Oxyz, cho các điểm A 2 ; 0 ; 0 , B 0 ; 3 ; 3 , C 0 ; 0 ; 4 . Gọi H là trực tâm tam giác ABC. Tìm phương trình tham số của đường thẳng OH.
A. x = 4 t y = 3 t z = - 2 t
B. x = 3 t y = 4 t z = 2 t
C. x = 6 t y = 4 t z = 3 t
D. x = 4 t y = 3 t z = 2 t
Xét các tam giác ABC nhọn nội tiếp đường tròn (O;R). Gọi V 1 , V 2 và V 3 lần lượt là thể tích của các khối tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB và quay tam giác OBC quanh trung trực của đoạn thẳng BC. Tính V 3 theo R khi biểu thức V 1 + V 2 đạt giá trị lớn nhất.
A. V 3 = 2 π 3 9 R 3
B. V 3 = 8 π 81 R 3
C. V 3 = 2 2 81 π R 3
D. V 3 = 18 − 6 2 9 π R 3
Xét các tam giác ABC nhọn nội tiếp đường tròn O ; R . Gọi V 1 , V 2 và V 3 lần lượt là thể tích của các khối tròn xoay sinh ra khi quay tam giác OCA quanh trung trực của đoạn thẳng CA, quay tam giác OAB quanh trung trực của đoạn thẳng AB và quay tam giác OBC quanh trung trực của đoạn thẳng BC. Tính V 3 theo R khi biểu thức V 1 + V 2 đạt giá trị lớn nhất.
A. V 3 = 2 π 3 9 R 3
B. V 3 = 8 π 81 R 3
C. V 3 = 2 2 81 π R 3
D. V 3 = 18 − 6 2 9 π R 3