Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn \(2\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{0}\), \(\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
a. Chứng minh \(\overrightarrow{AB}+\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{CN}-\overrightarrow{CA}\)
b. Biểu diễn các vec tơ \(\overrightarrow{AM},\overrightarrow{AN,}\overrightarrow{MN}\) theo hai vec tơ \(\overrightarrow{AB,}\overrightarrow{AC}\)
c. Chứng minh đường thẳng MN đi qua trung điểm P của AC
1. cho tam giac abc có AB = 4 AC = 5 và điểm M thoả mãn \(\overrightarrow{AM}=\dfrac{4}{9}\overrightarrow{AC}+\dfrac{5}{9}\overrightarrow{AB}\) .Tìm vị trí M
Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn \(\overrightarrow{AM}=\dfrac{1}{3}\overrightarrow{AB,}\overrightarrow{CN}=2\overrightarrow{BC}\)
Chứng minh rằng: \(\overrightarrow{MN}=\dfrac{-7}{3}+3\overrightarrow{AC}\)
1. Cho tam giác ABC có M,N,P là trung điểm BC, CA,AB. CMR:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC có I, J thỏa mãn: \(\overrightarrow{IA}=2\overrightarrow{IB},3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\), G là trọng tâm tam giác ABC.
a, Biểu thị vecto AI,AJ, AG theo vecto AB,AC
b CMR I,J,G thẳng hàng
cho tam giác ABC , trên cạnh AB , AC lấy hai điểm D và E sao cho \(\overrightarrow{AD}=2\overrightarrow{DB},\overrightarrow{CE}=3\overrightarrow{EA}\) . GỌi M là trung điểm DE và I là trung điểm của BC . Đẳng thức vecto nào sau đây đúng :
A . \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\) B. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}+\dfrac{3}{8}\overrightarrow{AC}\)
C. \(\overrightarrow{MI}=\dfrac{1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\) D. \(\overrightarrow{MI}=\dfrac{-1}{6}\overrightarrow{AB}-\dfrac{3}{8}\overrightarrow{AC}\)
Cho tứ giác ABCD và M , N lần lượt là trung điểm của đoạn thẳng AB , CD . Chứng minh rằng :
a / \(\overrightarrow{CA}+\overrightarrow{DB}=\overrightarrow{CB}+\overrightarrow{DA}=2\overrightarrow{MN}\)
b / \(\overrightarrow{AD}+\overrightarrow{BD}+\overrightarrow{AC}+\overrightarrow{BC}=4\overrightarrow{MN}\)
c / Gọi I là trung điểm của BC . Chứng minh rằng : \(2\left(\overrightarrow{AB}+\overrightarrow{AI}+\overrightarrow{NA}+\overrightarrow{DA}\right)=3\overrightarrow{DB}\)
HELP ME !!!!!!!!!!!
trong mp với hệ tọa độ Oxy cho tam giác ABC vói A(-4;1),B(2;4),C(2,-2)
Tính (2 \(\overrightarrow{AB}\) - \(\overrightarrow{AC}\) )*(\(\overrightarrow{AB}\)-2\(\overrightarrow{AC}\) )
Cho \(\Delta ABC\) vuông tại A, AB = AC = a
a) Tính \(\left|\overrightarrow{AB}-2\overrightarrow{AC}\right|\)
b) D là trung điểm BC, K đối xừng A qua B. I là trung điểm KD. Biểu thị \(\overrightarrow{AI}\) theo \(\overrightarrow{AB}\), \(\overrightarrow{AC}\)
c) Các điểm E, I thỏa mãn: \(\overrightarrow{AE}=\frac{1}{3}\overrightarrow{AC}\) ; \(\overrightarrow{BJ}=\frac{3}{8}\overrightarrow{BE}\).
Chứng minh A, I, J thẳng hàng.
a.Cho tam giác ABC có trọng tâm G.Gọi H là điểm đối xứng của B qua G. Phân tích \(\overrightarrow{AH}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) , phân tích \(\overrightarrow{CH}\) theo \(\overrightarrow{AB}\) và \(\overrightarrow{AC}\) .
b.Cho tam giác ABC với trọng tâm G,gọi M là trung điểm của đoạn AG.Chứng minh \(\overrightarrow{CM}\) =\(\frac{2}{3}\overrightarrow{CA}+\frac{1}{6}\overrightarrow{CB}\)