a: Xét ΔABC có
D là trung điểm của AB
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(FD=\dfrac{BC}{2}=3\left(cm\right)\)
a: Xét ΔABC có
D là trung điểm của AB
F là trung điểm của AC
Do đó: DF là đường trung bình của ΔABC
Suy ra: \(FD=\dfrac{BC}{2}=3\left(cm\right)\)
Bài 3. Cho tam giác ABC. Gọi D,E, F lần lượt là trung điểm của các cạnh AB, BC, AC.
a) Biết BC = 6 cm, tính độ dài DF ?
b) Chứng minh tứ giac BDFE là hình bình hành. c/ Chứng minh DE = FC
Bài 4: Cho tam giác ABC. Gọi M, N lần lượt là trung điểm của AB, BC. Lấy điểm D đối xứng
với N qua M.
a/ Biết AC = 12cm Tính độ dài đoạn thẳng MN ?
b/Tứ giác AMNC là hình gì? Vì sao?
c/ Tứ giác ADBN là hình gì? Vì sao?
Bài 5: Cho tam giác ABC , Gọi I, K, H lần lượt là trung điểm của AB, AC, BC.
a/ Chứng minh IK là đường trung bình của tam giác ABC
b/ Biết IK = 7cm, tính BC.
c/ Chứng minh tứ giác BIKH là hình bình hành
giúp mik vs mik cần gấp
. Cho tam giác ABC vuông tại A (AB < AC). Gọi D, E, F lần lượt là trung điểm các cạnh AB, BC, AC củatam giác ABC. a) Chứng minh: Tử giác BDFE là hình bình hành và AE = DF. b) Kẻ AH vuông góc BC (H thuộc BC). Chứng minh: DHEF là hình thang cân. c) Lấy điểm I đối xứng với E qua F, K đối xứng với B qua F. Chứng minh: A, I, K thẳng hàng.
Cho tam giác ABC vuông tại A. Gọi D, E, F lần lượt là trung điểm của 3 cạnh AB, BC, AC.
a) Tính độ dài DE, AE. Biết AB = 12 cm, AC = 16 cm
b) Chứng minh tứ giác BEFD là hình bình hành
c) Chứng minh tứ giác ADEF là hình chữ nhật
d) Gọi M là giao điểm của DE và BF, AM cắt DF tại H. Gọi I là trung điểm của đoạn thẳng MF. Chứng minh H,I,C thẳng hàng
Cho tam giác ABC cân tại A. Gọi D,E,H lần lượt là trung điểm của AB, AC, BC.
a) Tính độ dài đoạn thẳng DE khi BC=20cm.
b) Chứng minh: tứ giác DECH là hình bình hành.
c) Gọi F là điểm đối xứng của H qua E. Chứng minh: tứ giác AHCF là hình chữ nhật.
d) Gọi M là giao điểm của DF và AE; gọi N là giao điểm của DC và HE. Chứng minh NM vuông góc với DE.
Cho tam giác ABC vuông tại A có AB=6, gọi D, E lần lượt là trung điểm của BC, AC. Gọi F là điểm đối xứng với D qua E. a) Tính DE ? b) Chứng minh ABDF là hình bình hành c) Chứng minh ADCF là hình thoi. Tính cạnh hình thoi biết AC=8 ? d) Tam giác ABC phải thỏa mãn điều kiện gì để ADCF là hình vuông?
Cho tam giác ABC có ba gócnhọn (AB < AC).Gọi D,E lần lượt là trung điểm của các cạnh AB và AC.a)Chứng minh: DE// BC.b)Gọi F là trung điểm của BC. Chứng minh tứ giác BDEF là hình bình hành.c)Kẻ AH BC (H thuộc BC). Chứng minh tứ giác DEFH là hình thang cân.d)Chứng minh: A và H đối xứng nhau qua DE
Cho tam giác ABC vuông tại A (AB < AC). Gọi D, E, F lần lượt là trung điểm của các cạnh AB, BC, AC của tam giác ABC. a) Chứng minh rằng : tứ giác BDFE là hình bình hành. b) Kẻ AH ⊥BC (H∈BC). chứng minh : DHEF là hình thang cân. c) Lấy điểm L đối xứng với E qua F, K là điểm đối xứng của B qua F. Chứng minh ba điểm A, L, K thẳng hàng. d) Gọi I là giao điểm của CL và EK, O là giao điểm của AE và DF. Chứng minh rằng O và I đối xứng nhau qua F.
Giúp mình câu c,d với ạ!
Cho tam giác ABC có M , N lần lượt là trung điểm của AB , AC .
a ) Chứng minh : Tứ giác BMNC là hình thang .
b ) Cho BC = 6 cm . Tính độ dài MN .
c ) Gọi E là trung điểm của BC . Chứng minh : Tứ giác MNCE là hình bình hành .
d ) Gọi D là điểm đối xứng của M qua N . Chứng minh : Tứ giác BMDC là hình bình hành .
e ) Gọi O là giao điểm của DB và MC . Chúng minh E , O , N thẳng hàng .
Cho tam giác ABC vuông tại A. Từ trung điểm D của cạnh BC kẻ DE, DF lần lượt vuông góc với AB, AC (E thuộc AB, F thuộc AC).
a) Chứng minh: tứ giác AEDF là hình chữ nhật.
b) Gọi I là điểm đối xứng của D qua E. Chứng minh: tứ giác AIBD là hình thoi.
c) Gọi O là trung điểm của EF. Chứng minh: ba điểm I, O, C thẳng hàng.