a, Trong D là trung điểm của E là trung điểm của ⇒ DE là đường trung bình của ⇒ DE = 1/2AB (1)
và: DE // AB (2)
F là điểm đối xứng với E nên:
⇒ DF = 2DE = 2 . 1/2AB = AB (3) (theo Từ (2),(3) suy ra: ABDF là hình bình hành.
c, Do ABDF là hình bình hành nên:
D là trung điểm của BC
=> AF = BD (cmt)
=> BC = AF (5).
và: AB // DF
⇒ AC⊥DF.
Vậy, hình bình hành ADCF là hình thoi.
Ta có: ⇒AE = 1/2AC = 4.
góc E = 90∘ (⇒ AE2 + DE2 = AD2 (Định lý Pythagore)
thay số: 42 + 32 = AD2
16 + 9 = AD2
25 = AD2 => AD = 5 cm.
d, Để AD⊥BC.
Mà: AD⊥BC khi và chỉ khi BC hay:
△ABC vuông cân tại A.
Vậy, điều kiện để △ABC vuông cân tại A