Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
dưccs

Cho tam giác ABC đều, cạnh 23, trọng tâm G. Độ dài vectơ \(\overline{AB} \) - \(\overline{GC} \)

Nguyễn Lê Phước Thịnh
5 tháng 12 2023 lúc 22:09

Kẻ \(\overrightarrow{AH}=\overrightarrow{GC}\)

ΔABC đều có G là trọng tâm

nên G là tâm đường tròn nội tiếp ΔABC

=>AG,CG,BG lần lượt là phân giác của góc \(\widehat{BAC};\widehat{ACB};\widehat{ABC}\)

ΔABC đều

=>\(\widehat{BAC}=\widehat{ACB}=\widehat{ABC}=60^0\)

AG là phân giác của góc BAC

=>\(\widehat{BAG}=\widehat{CAG}=\dfrac{1}{2}\cdot\widehat{BAC}=\dfrac{1}{2}\cdot60^0=30^0\)

CG là phân giác của góc ACB

=>\(\widehat{ACG}=\widehat{BCG}=\dfrac{1}{2}\cdot\widehat{ACB}=30^0\)

Xét ΔGAC có \(\widehat{AGC}+\widehat{GAC}+\widehat{GCA}=180^0\)

=>\(\widehat{AGC}+30^0+30^0=180^0\)

=>\(\widehat{AGC}=120^0\)

\(\overrightarrow{AH}=\overrightarrow{GC}\)

=>AH//GC và AH=GC

Xét tứ giác AHCG có

AH//CG

AH=CG

Do đó: AHCG là hình bình hành

=>\(\widehat{GAH}+\widehat{AGC}=180^0\)

=>\(\widehat{GAH}=180^0-120^0=60^0\)

ΔABC đều có G là trọng tâm

nên \(AG=CG=BG=\dfrac{a\sqrt{3}}{3}=\dfrac{2\sqrt{3}\cdot\sqrt{3}}{3}=2\)

\(\overrightarrow{AB}-\overrightarrow{GC}=\overrightarrow{AB}-\overrightarrow{AH}=\overrightarrow{AB}+\overrightarrow{HA}=\overrightarrow{HB}\)

\(\widehat{BAH}=\widehat{BAG}+\widehat{GAH}=30^0+60^0=90^0\)

=>ΔABH vuông tại A

AH=CG

mà 2

nên AH=2

ΔABH vuông tại A

=>\(BH^2=AB^2+AH^2\)

=>\(BH^2=\left(2\sqrt{3}\right)^2+2^2=16\)

=>BH=4

=>\(\left|\overrightarrow{AB}-\overrightarrow{GC}\right|=\left|\overrightarrow{HB}\right|=HB=4\)


Các câu hỏi tương tự
Pham Trong Bach
Xem chi tiết
Vĩnh Đào
Xem chi tiết
Nguyễn Minh Quân
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cẩm Tú
Xem chi tiết
Ryo Gamer
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Khoa Anh
Xem chi tiết
Ya Ya
Xem chi tiết