Bài 11: Cho 3 điểm A(1,2), B(-2, 6), C(4, 4). i) Hãy phân tích AB, theo 2 véc tơ AU và CB ; theo 2 véctơ AC và CN
Cho tam giác ABC với I. J. K lần lượt đc xác định bởi IB = 2IC. JC = -1/2 JA. KA = - KB.
a) Tính IJ. IK theo AB và AC
b) Chứng minh ba điểm I.J.K thẳng hàng
Toàn bộ đều là véc tơ...e ko bix viết ra sao hết nên để ko luôn...
cho tam giác ABC có I là trung điểm của BC và G là trọng tâm . Gọi D và E là hai điểm xác định bởi vecto AD=2 vecto AB và vecto AE = 2/5 vecto AC . Hãy phân tích các vecto DE , DG theo hai vecto AB , AC . Chứng minh ba điểm D,G,E, thẳng hàng
Cho tam giác ABC. Tìm tập hợp các điểm M. a) độ dài véc tơ MA + độ dài véc tơ MB = độ dài véc tơ MA + độ dài véc tơ MC. b) độ dài véc tơ MA + độ dài véc tơ MB + độ dài véc tơ MC = độ dài véc tơ MA - độ dài véc tơ MB ๏_๏
Cho tam giác ABC. Gọi M, N là các điểm thỏa mãn \(2\overrightarrow{MA}-\overrightarrow{MB}=\overrightarrow{0}\), \(\overrightarrow{NB}+2\overrightarrow{NC}=\overrightarrow{0}\)
a. Chứng minh \(\overrightarrow{AB}+\overrightarrow{MN}=\overrightarrow{MB}+\overrightarrow{CN}-\overrightarrow{CA}\)
b. Biểu diễn các vec tơ \(\overrightarrow{AM},\overrightarrow{AN,}\overrightarrow{MN}\) theo hai vec tơ \(\overrightarrow{AB,}\overrightarrow{AC}\)
c. Chứng minh đường thẳng MN đi qua trung điểm P của AC
Cho tam giác ABC. M,N,P lần lượt là trung điểm AB, BC, AC và H,I lần lượt được xác định bởi vecto CI=2/5CA=0, GH+GB =0.( G là trọng tâm tam giác ABC)
a, C/m AB-IC-CB=AH-IH
b, phân tích IN theo AB và BC
c, C/m N, I, H thẳng hàng
Giúp mình mấy bài toán này với
1) Cho tam giác ABC trọng tâm G, K đối xứng với B qua G. M là trung điểm BC. CMR:
6 vt MK +4 vt AB + vt CB = vt 0
2) Cho tam giác ABC có AB=6, AC=8 . phân giác trong là AD, phân giác ngoài là AE, Biểu diễn vt AD, AE theo vt AB, AC
1. Cho tam giác ABC có M,N,P là trung điểm BC, CA,AB. CMR:
\(\overrightarrow{AM}+\overrightarrow{BN}+\overrightarrow{CP}=\overrightarrow{0}\)
2. Cho tam giác ABC có I, J thỏa mãn: \(\overrightarrow{IA}=2\overrightarrow{IB},3\overrightarrow{JA}+2\overrightarrow{JC}=\overrightarrow{0}\), G là trọng tâm tam giác ABC.
a, Biểu thị vecto AI,AJ, AG theo vecto AB,AC
b CMR I,J,G thẳng hàng
cho tam giác ABC. gọi I,J,K là các điểm chia đoạn thẳng BC,CA,AB theo tỉ số lần lượt là -2,-3,-1/6. chứng minh AI.BJ,CK đồng quy