Tọa độ điểm B là nghiệm của hệ phương trình :
\(\left\{{}\begin{matrix}x-y+2=0\\2x-y+8=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-6\\y=-4\end{matrix}\right.\Rightarrow B\left(-6;-4\right)\)
Ta có : \(\overrightarrow{n_{BH}}=\overrightarrow{u_{AC}}=\left(1;-1\right)\Rightarrow\overrightarrow{n_{AC}}=\left(1;1\right)\)
Phương trình đường thẳng AC đi qua \(A\left(3;2\right)\) và nhận \(\overrightarrow{n_{AC}}=\left(1;1\right)\) làm VTPT :
Suy ra AC : \(1\left(x-3\right)+1\left(y-2\right)=0\Leftrightarrow x+y-5=0\)
Gọi \(M\left(a;b\right)\Rightarrow2a-b+8=0\Rightarrow b=2a+8\) ( Vì M thuộc BM )
Do đó \(M\left(a;2a+8\right)\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=2x_M-x_A=2a-3\\y_C=2y_M-y_A=4a+14\end{matrix}\right.\)
Mà \(C\in AC\Rightarrow2a-3+4a+14-5=0\Leftrightarrow a=-1\)
\(\Rightarrow\left\{{}\begin{matrix}x_C=-5\\y_C=10\end{matrix}\right.\) . Vậy \(C\left(-5;10\right)\)