a) Xét tam giác AHD và tam giác CKD có:
AHD=CKD=90
\(D_1=D_2\) (2 góc đối đỉnh)
=> tam giác AHD đồng dạng tam giác CKD (g-g)
=> đpcm
b) Xét tam giác AHB và tam giác CKB có
AHB=BKC=90
ABD=DBC ( BD là tia phân giác ABC)
=> Tam giác AHB đồng dạng CKB (g-g)
=> \(\dfrac{AB}{HB}=\dfrac{BC}{KB}=>AB.KB=BC.HB\)
c) Vì IM//BD=> IMC=DBC ( 2 góc so le trong) mà BMN=IMC ( 2 góc đối đỉnh) (1)
Vì IN//BD => INA=ABD ( 2 góc đồng vị) (2)
Từ (1) và (2) => INA=BMN => tam giác AMN cân tại B