Lời giải:
a)
\(\overrightarrow{BC}=(2--1,-4-3)=(3,-7)\Rightarrow \) vecto pháp tuyến của đt $BC$ là \((7,3)\)
PT tổng quát của $BC$ có dạng:
$7(x-x_B)+3(y-y_B)=0$
$\Leftrightarrow 7(x+1)+3(y-3)=0$
$\Leftrightarrow 7x+3y-2=0$
b) \(\overrightarrow{AH}\perp \overrightarrow{BC}\) nên vecto pháp tuyến của $AH$ chính là vecto chỉ phương của $BC$.
Hay \(\overrightarrow{n_{AH}}=\overrightarrow{u_{BC}}=(3,-7)\)
PTĐT $AH$ có dạng:
$3(x-x_A)+(-7)(y-y_A)=0$
$\Leftrightarrow 3(x+1)-7(y-1)=0$
$\Leftrightarrow 3x-7y+10=0$