a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{DAB}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Suy ra: \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
a) Xét ΔAEC vuông tại E và ΔADB vuông tại D có
\(\widehat{DAB}\) chung
Do đó: ΔAEC\(\sim\)ΔADB(g-g)
Suy ra: \(\dfrac{AE}{AD}=\dfrac{AC}{AB}\)(Các cặp cạnh tương ứng tỉ lệ)
hay \(AE\cdot AB=AD\cdot AC\)(đpcm)
Cho tam giác ABC có ba góc nhọn (AB<AC), các đường cao BD và CE cắt nhau tại H
a) Chứng minh: Tam giác ABD đồng dạng với tam giác ACE và AB.AE = AC.AD
b) Chứng minh: góc AED = góc ACB
c) Tia AH cắt ED và BC lần lượt tại K và F. Chứng minh: EK.FD = KD.EF
các bạn chỉ mình với hic nãy giờ chẳng có ai giúp ☹
Cho ▲ ABC có ba góc nhọn (AB<AC), các đường cao BD, CE cắt nhau tại H.
a) Chứng minh ▲ AEC đồng dạng với ▲ ADB.
b) Chứng minh gốc ADE = ABC
c) AH cắt BC tại F. Vẽ FM, FN lần lượt vuông góc với AB, AC (M AB, N AC). Chứng minh MN // ED.
Cho tam giác ABC có góc nhọn ( AB<AC). Vẽ đường cao BD và CE của tam giác ABC cắt nhau tại H
a) C/m tam giác HEB đồng dạng tam giác HDC và HE.HC=HD.HB
b)Vẽ tia AH cắt BC tại F. C/m AF vuông góc với BC và BH.BD=BF.BC
Giúp mình với ạ!
cho tam giác ABC nhọn có 2 đường cao BF và CE cắt nhau tại H , AH cắt BC tại D
a, CM: tam giác AEC đồng dạng AFB
b, CM:AE.AB=À.AC
c, CM: tam giác BDH đồng dạng với BFC và BH.BF+CH.CE=BC
d, vẽ DM vuông góc với AB tại M , DN vuông góc với AC tại N CM: MN//EF
Tam giác ABC nhọn có các đường cao BD và CE. Kẻ các tia phân giác của các góc ABC và ACE, chúng cắt nhau tại O và lần lượt cắt AC , AB tại N, M. Tia BN cắt CE tại K, tia CM cắt BD tại H.
a)BN vuông góc với CM
B) Chứng min tứ giác MNHK là hình thoi.
Cho tam giác nhọn ABC (AB<AC). Các đường cao BD CE cắt nhau tại H. Gọi M,I lần lượt là trung điểm của BC và DE ; AM cắt ED tại N, AI cắt BC tại K.
a) CM: tam giác AID đồng dạng tam giác AMB
b) CM: NK//AH
cho tam giác abc nhọn có 2 đường cao bf, ce cắt nhau tại h. Tia ah cắt bc tại d.
a) cm:tam giác aec đồng dạng tam giác afb.
b) cm: ae*ab=af*ac rồi từ đó suy ra tam giác aef đồng dạng với tam giác acb.
c) cm: tam giác bdh đồng dạng tam giác bfc và bh*bf+ch*ce=bc^2
d) vẽ dm vuông góc ab tại m, dn vuông góc ac tại n.
cm: mn song song ef
Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC) và có AB = 12 em và AC = l6 cm. Tia
phân giác của góc ABC cắt AH tại M và cắt AC tại N. Đường thắng qua H song song với BN cắt AC tại I.
a) Chứng minh tam giác ABC và tam giác HBA đồng dạng với nhau.
b) Tính BC và AH và BH.
c) Chứng minh tam giác AMN cân tại A và AM .AB =MH. BC.
đ) Chứng minh AM? =NI. NC.
Bài1: cho tam giác ABC nhọn(AB《AC). Có hai đường cao BE và CF cắt nhau tại H.
a) CM: Tam giác ABE đồng dạng với tam giác ACF.
b) CM: Tam giác AFE đồng dạng với tam giác ACB.
c) Tia phân giác của góc ABE cắt tia phân giác của góc ACF tại K,gọi I,J lần lượt là trung điểm của AH và BC. Cm: I,K,J thẳng hàng.
Bài2: Cho tam giác ABC vuông tại A (AB《AC),vẽ đường cao AH. Trên đoạn thẳng HC lấy điểm M (M không trùng với H và C),từ M vẽ MN vuông góc với AC tại N.
a) CM:tam giác CMN đồng dạng với tam giác CAH và CA×CN=CH×CM
b) CM: tam giác ACM đồng dạng với tam giác HNC.
c) Trên tia đối của tia AC lấy điểm D sao cho AD《AC. Vẽ AE vuông góc với BD tại E. CM:góc BEH=góc BCN. Gọi K,F lần lượt là trung điểm BH và BD. I là giao điểm của EK và CF. CM: KC×IE=EF×IC.