Cho tam giác ABC vuông tại A, đường cao AH (H thuộc BC) và có AB = 12 em và AC = l6 cm. Tia
phân giác của góc ABC cắt AH tại M và cắt AC tại N. Đường thắng qua H song song với BN cắt AC tại I.
a) Chứng minh tam giác ABC và tam giác HBA đồng dạng với nhau.
b) Tính BC và AH và BH.
c) Chứng minh tam giác AMN cân tại A và AM .AB =MH. BC.
đ) Chứng minh AM? =NI. NC.
a: Xét ΔABC vuông tại A và ΔHBA vuông tại H có
góc B chung
=>ΔABC đồng dạng với ΔHBA
b: BC=căn 12^2+16^2=20cm
AH=12*16/20=192/20=9,6cm
BH=AB^2/BC=7,2cm
c: góc ANM=90 độ-góc ABN
góc AMN=góc HMB=90 độ-góc NBC
mà góc ABN=góc NBC
nên góc AMN=góc ANM
=>ΔAMN cân tại A