góc ABC=góc ACB=(180-66)/2=114/2=57 độ
=>góc BAC>góc ABC=góc ACB
=>Trong các cung nhỏ AB,BC,CA thì cung lớn nhất là cung BC
góc ABC=góc ACB=(180-66)/2=114/2=57 độ
=>góc BAC>góc ABC=góc ACB
=>Trong các cung nhỏ AB,BC,CA thì cung lớn nhất là cung BC
Cho tam giác ABC cân tại A có A ^ = 66 ° nội tiếp đường tròn (O) . Trong các cung nhỏ AB, BC, CA thì cung nào là cung lớn nhất?
A. AB
B. AC
C. BC
D. AB, AC
Cho tam giác ABC cân tại A có A ^ = 66 ° nội tiếp đường tròn (O) . Trong các cung nhỏ AB, BC, CA thì cung nào là cung lớn nhất?
A. AB
B. AC
C. BC
D. AB, AC
Cho tam giác ABC cân tại A nội tiếp trong đường tròn (O). Hãy so sánh các cung nhỏ AB, AC và BC biết A ^ = 50 0
Cho tam giác ABC nội tiếp đường tròn. P,Q,R theo thứ tự là các điểm chính giữa các cung bị chắn BC,CA,AB bởi các góc A,B,C. Có: AP⊥QR. Vẽ AP cắt CR tại I, ta được tam giác CPI là tam giác cân. Cho điểm A di chuyển trên cung lớn BC, hỏi I di chuyển trên đường nào?
Cho tam giác ABC cân tại B nội tiếp trong đường tròn tâm O. Biết góc C=30 độ,hay so sánh các cung nhỏ AB,AC và BC
Cho tam giác ABC, không có góc tù (AB<AC) nội tiếp đường tròn (O;R). B,C cố định, A di động trên cung lớn BC . Các tiếp tuyến tại B,C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC ), cắt BC tại F, cắt AC tại K.
a) CMR:tứ giác MBOC nội tiếp
b) CMR: FK.FM=FD.FE
GIÚP MÌNH VỚI, MÌNH ĐANG CẦN GẤP !!
Cho tam giác ABC cân tại A nội tiếp đường tròn tâm O bán kính R. Trên cung nhỏ
BC lấy điểm K . AK cắt BC tại D
a , Chứng minh AO là tia phân giác của góc BAC . b , Chứng minh AB2 = AD.AK
c , Tìm vị trí điểm K trên cung nhỏ BC sao cho độ dài AK là lớn nhất . d, Cho góc BAC = 300
. Tính độ dài AB theo R.
Cho tam giác ABC không có góc tù (AB < AC), nội tiếp đường tròn (O; R). (B, C cố định, A di động trên cung lớn BC). Các tiếp tuyến tại B và C cắt nhau tại M. Từ M kẻ đường thẳng song song với AB, đường thẳng này cắt (O) tại D và E (D thuộc cung nhỏ BC), cắt BC tại F, cắt AC tại I.
a) Chứng minh rằng MBIC là tứ giác nội tiếp.
b) Chứng minh rằng: FI.FM = FD.FE.
c) Đường thẳng OI cắt (O) tại P và Q (P thuộc cung nhỏ AB). Đường thẳng QF cắt (O) tại T (T khác Q). Chứng minh ba điểm P, T, M thẳng hàng.
d) Tìm vị trí điểm A trên cung lớn BC sao cho tam giác IBC có diện tích lớn nhất.
Cho tam giác ABC nội tiếp đường tròn (O). Các cung nhỏ AB,BC,CA có số đo lần lượt là
x+10®, x+20®, x+30°. Tính số đo các góc của tam giác ABC.