a: Xét ΔABE vuông tạiE và ΔACF vuông tại F có
góc BAE chung
Do đó: ΔABE\(\sim\)ΔACF
SUy ra: AE/AF=AB/AC
=>AE/AB=AF/AC và \(AE\cdot AC=AB\cdot AF\)
b: Xét ΔAEF và ΔABC có
AE/AB=AF/AC
góc A chung
Do đó: ΔAEF\(\sim\)ΔABC
a ).
t/g ABE đồng dạng t/g ACF ( g/g )
=> \(\dfrac{AB}{AC}=\dfrac{AE}{AF}\)
hay AB . AF = AC . AE
b) .
\(\dfrac{AB}{AC}=\dfrac{AE}{AF}\Rightarrow\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
Xét t/g AEF và t/g ABC có:
góc A chung
và \(\dfrac{AE}{AB}=\dfrac{AF}{AC}\)
suy ra : t/g AEF đồng dạng tg ABC