a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co
góc A chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
a: Xét ΔAEB vuông tại E và ΔAFC vuông tại F co
góc A chung
=>ΔAEB đồng dạng với ΔAFC
b: ΔAEB đồng dạng với ΔAFC
=>AE/AF=AB/AC
=>AE*AC=AB*AF
Cho tam giác nhọn ABC có ba đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh: Tam giác ABE đồng dạng với tám giác ACF, từ đó suy ra : AB.AF = AC.AE
b) Chứng minh: DB.DC = DA.DH
c) Gọi I là trung điểm của BC. Đường thẳng vuông góc với IH tại H cắt AB và AC lần lượt tại M và N. Chứng minh: Tam giác AHN đồng dạng với tam giác BIH và H là trung điểm của MN.
Cho tam giác ABC có 3 góc nhọn. Ba đường cao AD, BE, CF cắt nhau tại H.
a) Chứng minh: tam giác AEB đồng dạng với tam giác AFC. Tính tỉ số đồng dạng với AB=4cm, AC=6cm.
b) Chứng minh: tam giác AEF đồng dạng với tam giác ABC.
c) Kéo dài EF và BC cắt nhau tại I. Gọi M là trung điểm của BC. Chứng minh: IE.IF=IM^2-BC^2/4.
d) Gọi N là trung điểm của AH. Chứng minh: MN vuông góc với EF.
Cho tam giác nhọn ABC có AB < AC. Ba đường cao AD, BE và CF cắt nhau tại H. AH cắt EF tại I.
a/ Chứng minh tam giác ABE và ACF đồng dạng, tam giác AEF và ABC đồng dạng.
b/ Vẽ FK vuông góc BC tại K. Chứng minh AC.AE = AH.AD và CH.DK = CD.HF.
c/ Chứng minh EI/ED = HI/HD.
d/ Gọi M, N lần lượt là trung điểm của AF và CD. Chứng minh tổng các góc BME và BNE bằng 180o.
Cho tam giác nhọn ABC (AB<AC), các đường cao AD,BE và CF cắt nhau tại H.
a) Chứng minh rằng: Tam giác ABC đồng dạng tam giác ACF và AB.AF = AC.AE
b) Chứng minh rằng: góc AED = góc ACB
c) Gọi M là trung điểm của BC, K là giao điểm của đường thẳng EF và đường thẳng BC. Chứng minh BC2 = 4.MD.MK
Cho tam giác ABC nhọn (AB<AC) có hai đường cao BE và CF.
a) Chứng minh tam giác ABE đồng dạng với tam giác ACF, suy ra AB.AF=AC.AE
b) Chứng minh tam giác ABC đồng dạng với tam giác AEF
c) EF cắt BC tại I. Chứng minh IF.IE=IB.IC
d) Gọi M là trung điểm của BC. Chứng minh IF.IE=\(IM^2\)-\(MC^2\)
Cho AABC có 3 góc nhọn (AB < AC), ba đường cao AD, BE, CF cắt nhau tại H. a) Chứng minh: tam giác ABE đồng dạng tam giác ACF và AC.AE = AB.AF b) Chứng minh: tam giác BDF đồng dạng tam giác BAC và góc BFD = góc BCA
Cho tam giác ABC nhọn (AB<AC), ba đường cao AD,BE,CF cắt nhau tại H. Kéo dài EF và BC cắt ngay tại I. Gọi M là trung điểm BC. A. Chứng minh: IE.IF=IM^2-(BC^2/4)
B. Gọi N là trung điểm AH. Chứng minh MN vuông góc EF
Bài 23 : Cho tam giác ABC vuông tại A ( AB < AC ) . Gọi F là trung điểm của BC , qua F kẻ đường thẳng d vuông góc và BC , đường thẳng d cắt đường thẳng AB , AC lần lượt tại D và E.
a ) Chứng minh : tam giác AED đồng dạng với tam giác PEC
b ) Chứng minh , BF.FC = DF.EF
c ) Tính BC biết DE = 5cm , EF = 4cm
. d ) Gọi K là giao điểm của BE và DC , đường thẳng FK cắt AC tại I. Chứng minh : AC. EI = AE . IC
.Bài 26 : Cho tam giác ABC vuông tại A , đường cao AH . Gọi E , F lần lượt là chân đường vuông góc kẻ tử H đến AB , AC
a ) Chứng minh : AH = EF
b ) Chứng minh : AB^2 = BH.BC
c ) Chứng minh :tam giác HEF đồng dạng vớ itam giác ABC
d ) Kẻ tìa Bx vuông góc BC , Bx cắt đường thẳng AC tại K. Gọi O là giao điểm của EF và AH . Chứng minh : CO đi qua trung điểm của KB .
Bài 27 : Cho tam giác ABC có góc A = 90 độ ; AB = 15cm , AC = 20cm , đường phân giác BD cắt đường cao AH tại K.
a ) Tính BC , AD
b ) Chứng minh tam giác AHB đồng dạng với tam giác CAB ,
c ) Chứng minh : BH.BD = BK.BA , d ) Gọi M là trung điểm của KD . Kẻ tia Bx song song với AM . Tia Bx cắt tia AH tại J , Chứng minh : HK.AJ = AK.HJ .
Bài V:
Cho tam giác nhọn ABC có AB < AC. Ba đường cao AD, BE, CF cắt nhau tại H; AH cắt EF tại I.
a) Chứng minh: D ABE và D ACF đồng dạng; D AEF và D ABC đồng dạng.
b) Vẽ FK ^ BC tại K. Chứng minh: AC.AE = AH.AD và CH.DK = CD.HF.
c) Chứng minh: . EI/ED = HI/HD
d) Gọi M và N lần lượt là trung điểm của đoạn AF và đoạn CD.
Chứng minh: góc BME + góc BNE = 180o