1. chứng minh rằng các hằng đẳng thức sau với điều kiện các biểu thức tồn tại:
a) \(\dfrac{a\sqrt{b}+b\sqrt{a}}{\sqrt{ab}}:\dfrac{1}{\sqrt{a}-\sqrt{b}}=a-b\)
b)\(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)=1-a\)
cho P=\(\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}\),với a;b>0 và a+b=\(\sqrt{2}\). chứng minh P≥(\(\sqrt{2}+1\))\(^2\)
Chứng minh các đẳng thức sau:
a) \(\left(1-a^2\right):\left[\left(\frac{1-a\sqrt{a}}{1-\sqrt{a}}+\sqrt{a}\right)\left(\frac{1
+a\sqrt{a}}{1+\sqrt{a}}-\sqrt{a}\right)\right]+1=\frac{2}{1-a}\)
b) \(\left(\sqrt{a}+\frac{b-\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\right):\left(\frac{a}{\sqrt{ab}+b}
+\frac{b}{\sqrt{ab}-a}-\frac{a+b}{\sqrt{ab}}\right)=\sqrt{b}-\sqrt{a}\)
c) \(\frac{\sqrt{a}+\sqrt{b}-1}{a
+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a
+\sqrt{ab}}\right)=\frac{\sqrt{a}}{a}\)
d) \(\left(\frac{a\sqrt{a}+b\sqrt{b}}{\sqrt{a}+\sqrt{b}}-\sqrt{ab}\right)\left(\frac{\sqrt{a}+\sqrt{b}}{a-b}\right)^2=1\)
Bài 3:
a) cho a≥1,b≥1. Chứng minh: a\(\sqrt{b-1}\)+b\(\sqrt{a-1}\) ≤ ab
b) ) Cho 4 số thực dương a, b, c, d. Chứng minh rằng: \(\sqrt{ac}+\sqrt{bd}\)≤\(\sqrt{\left(a+b\right)\left(c+d\right)}\)
Cho a,b,c là ba số thực dương thỏa mãn điều kiện ab+bc+ac=3abc. Chứng minh rằng:
\(\sqrt{\dfrac{ab}{a+b+1}}+\sqrt{\dfrac{bc}{b+c+1}}+\sqrt{\dfrac{ca}{c+a+1}}\ge\sqrt{3}\)
1)cho a,b,c là các số nguyên dương thỏa mãn đẳng thức \(\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=2\)\(\)chứng minh rằng
\(\frac{a}{1+\frac{b}{a}}+\frac{b}{1+\frac{c}{b}}+\frac{c}{1+\frac{a}{c}}\ge1\)
2)với a,b,c là các số thực dương chứng minh rằng :\(\sqrt{a^2+b^2-3\sqrt{ab}}+\sqrt{b^2+c^2-bc}\ge\sqrt{a^2+c^2}\)
cho a>=1;b>=1 chứng minh \(a\sqrt{b-1}+b\sqrt{a-1}\le ab\)
a)Cho a>b>0 chứng minh rằng \(\frac{1}{a+b}\le\frac{1}{2\sqrt{ab}}\)
b) Chứng minh \(\frac{\sqrt{2}-\sqrt{1}}{3}+\frac{\sqrt{3}-\sqrt{2}}{5}+\frac{\sqrt{4}-\sqrt{3}}{7}+...+\frac{\sqrt{2011}-\sqrt{2010}}{4021}< \frac{1}{2}\)
Cho a,b,c>0 thỏa mãn \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\). Chứng minh
\(\sqrt{a+bc}+\sqrt{b+ac}+\sqrt{c+ab}\ge\sqrt{abc}+\sqrt{a}+\sqrt{b}+\sqrt{c}\)
Cho a, b, c là các số thực dương đôi một khác nhau thỏa mãn:
\(\dfrac{\sqrt{ab}+1}{\sqrt{a}}=\dfrac{\sqrt{bc}+1}{\sqrt{b}}=\dfrac{\sqrt{ca}+1}{\sqrt{c}}\)
Chứng minh rằng abc = 1