\(P=\dfrac{4}{a^2+b^2}+\dfrac{1}{ab}=\dfrac{4}{\left(a+b\right)^2-2ab}+\dfrac{1}{ab}=\dfrac{4}{2-2ab}+\dfrac{1}{ab}=\dfrac{2}{1-ab}+\dfrac{1}{ab}\)Áp dụng BĐT Bunhiacopxki dạng phân thức ta có:
\(\dfrac{2}{1-ab}+\dfrac{1}{ab}\ge\dfrac{\left(\sqrt{2}+1\right)^2}{1-ab+ab}=\left(\sqrt{2}+1\right)^2\) hay \(P\ge\left(\sqrt{2}+1\right)^2\)
Dấu "=" xảy ra khi \(\dfrac{\sqrt{2}}{1-ab}=\dfrac{1}{ab};a+b=\sqrt{2}\)
\(\Leftrightarrow\left\{{}\begin{matrix}a+b=\sqrt{2}\\ab=\dfrac{1}{\sqrt{2}+1}\end{matrix}\right.\Leftrightarrow\left(a;b\right)=\left(1;-1+\sqrt{2}\right),\left(-1+\sqrt{2};1\right)\)