Ta co': \(sin^2x+cos^2x=1\)
\(\Rightarrow sin^2x+\left(\dfrac{1}{\sqrt{5}}\right)^2=1\)
\(\Rightarrow sin^2x=1-\dfrac{1}{5}\)
\(\Rightarrow sin^2x=\dfrac{4}{5}\)
\(\Rightarrow sinx=\pm\dfrac{2}{\sqrt{5}}\)
Với \(sinx=\dfrac{2}{\sqrt{5}}\Rightarrow\left\{{}\begin{matrix}tanx=\dfrac{sinx}{cosx}=2\\cotx=\dfrac{cosx}{sinx}=\dfrac{1}{2}\end{matrix}\right.\)
Với \(sinx=\dfrac{-2}{\sqrt{5}}\Rightarrow\left\{{}\begin{matrix}tanx=\dfrac{sinx}{cosx}=-2\\cotx=\dfrac{sinx}{cosx}=-\dfrac{1}{2}\end{matrix}\right.\)